Public Outreach via Ichnology: From “K to Gray”

(This post is the third in a series discussing academic scientists and public outreach of their science, but with a focus on my recent experiences in using ichnology and paleontology for public outreach. The first of the series, introducing science outreach in general and some of its challenges for academic scientists, is here, and the second, giving an example of how I did public outreach with kids at a local natural history museum, is here.)

During this past week, one of the lessons reinforced from doing public outreach of my science is that, before doing any public event, you first have to ask yourself a very important question: “Who is my audience?” You might think this is a basic question to ask, but it sometimes is not, simply because it takes a lot of courage to change old habits, especially if those habits are constantly rewarded.

Most academic scientists, including paleontologists, are trained to deliver professional talks to their peers, and their peers only. These are formal presentations, using PowerPoint or similar presentation software, which are either 15-20 minutes long (a talk at a professional conference) or a little less than an hour (a talk in a university seminar). In such talks, speakers take full advantage of jargon specific to their field and other verbal accouterments that are intended to set us apart from mere mortals and elevate us among our peers. This sort of presentation style is already a little scary for a lot of us scientists – many of whom are quite introverted – but that’s the standard, and we are rewarded for doing it just like that.

So I understand how doing something different for a presentation, and one not delivered to peers in your scientific field, might seem even scarier. And to depart from this basic model means you could be heading into unknown territory with all sorts of intellectually frightening prospects, of which most paramount is: what if people don’t understand what I’m saying?

Just before giving a public talk at Georgia College and State University this past April, my host, paleobotanist Dr. Melanie DeVore, introduces me, then we perform a ritual greeting with one another as if we are fiddler crabs. Most people in academia would consider this as a non-standard way to start a presentation. (Photograph by Ruth Schowalter, taken at Georgia College and State University in Milledgeville.)

Like many people who pay attention to science communication, I’ve seen a full spectrum of presentation styles with scientists who do public events. Some of these scientists were fantastically successful in communicating their passions, and I think their success was largely because they really seemed to knew who was there. Here’s also what I’ve seen them do:

  • They used a right tone throughout, respectful of the audience, yet confident in conveying their authority on a topic, while throwing in occasional humorous asides.
  • They were enthusiastic while remaining coherent.
  • They used language appropriate for their audience, applying simpler and less syllabic words in place of multisyllabic jargon.
  • Where jargon was used, it was explained in single, easy-to-follow sentences, and then reinforced with visual aids.
  • Once in a while they would repeat key points, but not so often that people got bored or (worse) thought the speaker was treating them like they were brain-dead morons.
  • Their bodies were an integral part of communicating their science, whether through moving, gesturing, acting out a scientific principle, or even varying facial expressions.
  • Their visual aids were perfectly understandable, using photographs of real, phenomena – but taken creatively – and beautiful artwork or graphs that also convey information clearly.

For those academic scientists who were supremely unsuccessful in communicating their science at a public event, they did the opposite of everything I just listed. Regardless, for both end members of this spectrum, I am very grateful for their showing me what works, and what doesn’t.

So in my first outreach event, done on Saturday, July 14 at Fernbank Museum of Natural History, my audience mostly consisted of children and their parents. Knowing that very few (if any) of their parents would have been academic scientists, my props, approach, and attitude were prepared with children and non-scientist adults in mind. In such preparations, I knew that visual aids would be important to augment any concepts I wanted to get across. I also knew that I would have to be somewhat basic in any terms I used, but without resorting to “See the dinosaur run. Run, dinosaur, run!” My enthusiasm had to be high, and I would have to be very friendly. Last, I had to be ready for nearly any idea or question to out of their mouths, from very well informed to, well, less so.

Fortunately, these preparations paid off, and I had a wonderful two hours interacting with a wide range of kids, ranging from 4-12 years old, and parents who shared their kids’ excitement about dinosaurs, fossils, and other facets of natural history.

Two days later, on Monday, July 16, I had a very different audience, and one that required a big mental shift from my Fernbank experience, but closer to what academic scientists would consider “normal.” It was the Emory Emeritus College, an organization within my home university. So it was a “home crowd,” and I knew most of them would be receptive to what I had to say. Yet it still represented a small challenge in knowing my audience and figuring out how to deliver it.

The Emory Emeritus College, as one might have figured out from its name, is composed of retired faculty at Emory University. Although I knew some of the faculty from before their retirement, I wanted to learn more about the goals and activities of this organization. I was pleasantly surprised to find out they were part of a nationwide organization, called the Association of Retirement Organizations in Higher Education. What is this? In their own words:

The Association of Retirement Organizations in Higher Education (AROHE) is an international network of retiree organizations at colleges and universities, fosters the development and sharing of ideas to assist member organizations in achieving their purposes and goals.

Along those lines, part of the mission of the Emory group is to foster further learning in retired faculty through regular lunchtime or breakfast-time lectures on a variety of general-interest topics. So I was delighted, several months ago, to have been invited to speak to this group by Dr. Sidney (Sid) Perkowitz. Sid is a retired physics professor who is also one of the few science faculty members at Emory – retired or otherwise – writing trade books intended specifically for public audiences, such as Hollywood Science, Empire of Light, and others. And not just books: he writes articles, essays, stage plays, performance dance pieces, and screenplays. In other words, he’s a pretty cool dude, and a great example of what scientists can become if they want to connect their science to a broader audience.

Sid thought that it would be great if I could talk with the emeritus faculty about the topic of my upcoming book (which is, like, you know, the title of this blog). But he also wanted me to mention how I integrate science and art in my work. Fortunately, the standard talk I give to public audiences about the book has plenty of examples of that, provided through my illustrations and photographs that will be in the book. Here are a few samples:

Three examples of slides I’ve used in my standard talk about my book, intended for general audiences, with some combining illustrations of mine and photographs. I know some people would suggest that I use even less text on the slides, but a little bit of information in addition to whatever I’m saying seems to help, too.

I suspected this approach – using visual elements to explain the subject of the talk – would work very well with this audience, which was composed of an eclectic group of well-educated people: artists, writers, literary critics, historians, theologians, physicians, chemists, political scientists, and more. Yet I was also keenly aware that just because they retired from teaching at Emory didn’t mean their minds had shut down. This was going to be an engaged, alert bunch.

It worked. About thirty people were there, mostly emeritus faculty, but with a few younger staff helping with the organization of lunch. After a generously laudatory introduction by my hosts, I began with the mystery of the broken bivalve, the opening few pages of the book, but told through images.

They were an attentive audience, with only one person nodding off halfway through my talk, which was much better than what I’ve experienced in a similarly sized class of 18-22year-old students (and following a delicious lunch, so completely understandable). Both planned and unplanned laughs took place throughout the talk, which always helps to relax an audience and me, too.

The time for questions was the part I savored, because I knew they’d be good, conversational ones. Here are three I remember:

  1. What about the history of ichnology? How long have people been recognizing traces and trace fossils? Answer: It’s as old as humanity, although ichnology has been around as a formal science since the early 19th century.)
  2. How could someone as young as me be able to do this (ichnology) so well? (This got a good laugh, because I’m 52 years old, which was “young” for this crowd.”) Answer: Lots of practice. (“How do you get to Carnegie Hall? Practice.”) Also, I know I have a long ways to go whenever I’m around peers who are much better at this than me (and older).
  3. How would this (ichnology) be useful for convincing people that global-climate change is not just some crazy left-wing conspiracy? Answer: The last slide in my talk is a prediction of what will happen on the Georgia coast with increased sea level over the next 100 years or so, and traces will be one more piece of evidence that this is happening.

The most important question, though, was at the very last, and it connected directly with my experience with the children at Fernbank Museum only two days before. What was going to be the future of ichnology if the current generations of children are less likely to go outside and observe nature?

I didn’t really have an answer for this, other than to say that I teach a freshman seminar on tracking at Emory, which gets 18-year-olds out in the classroom, and that some creative combination of digital media that also involves looking at traces outside (such as CyberTracker™) might help, too. It’s not an easy problem to solve, and it’s real. That’s why the first piece of advice I gave kids at Fernbank two days previously was to get outside and enjoy what nature had to teach them.

But this was a key point. Science isn’t just something we learn in college, especially in one required course so we could graduate for non-scientists, or doing it exclusively in a lab with colleagues in academia. It should be life-long learning, or as some science educators say, “from K to gray.” So I see ichnology and the popularizing of it as a science as one solution among many, to make sure that our lives are filled with everyday but awe-inspiring science, from our first toddling steps to our last conscious breaths.

 

Macon Museum of Arts and Sciences Lecture

Polar Dinosaurs: Australia to Alaska
Tuesday, July 17, 2012, 7:00 p.m.
Lecture about dinosaurs that lived near the North and South Poles during the Cretaceous Period, told from the perspective of a paleontologist who has done field work in Australia and Alaska. Admission $5 for members, $7 for non-members. More information, including directions to the Macon Museum of Arts and Sciences, here.

Traces of Toad Toiletry and Naming Trace Fossils

Sometimes I envy those people on the Georgia barrier islands who, through sheer number of hours in the field, come upon animal traces that I’ve never seen there. But this was one of those instances where the find was so extraordinary that I will suppress my jealous urges, celebrate the person who found it, marvel at it, and share its specialness with others.

Gale Bishop, a fellow ichnologist who is currently on St. Catherines Island, found an intriguing sequence of traces during a morning foray on its dunes and beaches there last week. In his second life – his first was as a geology professor at Georgia Southern University – he has transformed into an indefatigable sea-turtle-nesting monitor on St. Catherines and coordinator of a teacher-training program. Part of his daily routine there, among many other duties, includes looking for mother-turtle traces – trackways and nests – during the nesting season, which in Georgia is from May through September.

Along the way, with his eyes well trained for spotting jots and tittles in the sand, Gale often notices oddities that likely would be missed by most people, including me. The following photograph, which he shared on the St. Catherines Island Sea Turtle Program page on Facebook, is from a find he made about 7:15 a.m. on Saturday, July 7. Take a look, and please, if you haven’t already, forget the title of this post as you ponder its clues.

A mystery in the dune sands of St. Catherines Island on the Georgia coast, begging to be interpreted. No, not the shovel: those are never mysterious. Look at the traces to the left and above the shovel. What made these, what was it doing, and who else was in the neighborhood afterwards? Oh, and again, stop staring at the shovel. (Photograph by Gale Bishop.)

Gale called me out specifically when he posted this and several other related photos on Facebook, and asked me to tell a story about it. I gave him my abbreviated take in the comments, kind of like an abstract for the research article:

Looks like southern toad (Bufo terrestris) to me. What’s cool is the changes of behavior: hopping, stopping, pooping, and alternate walking (which people don’t expect toads to do – but they do).

That was my knee-jerk analysis, which took a grand total of about a minute to discern and respond. (After all, this was Facebook, a forum in which prolonged and deep thinking is strongly discouraged.) But I also kept in mind that quick, intuitive interpretations later need introspection and self-skepticism, especially when I’m making them. (See my previous post for an example of how wrong I could be about some Georgia-coast traces.) So rather than fulfill some Malcolm Gladwell-inspired cliché through my intuition, I sat down to study the photo with this series of questions in mind:

  • Why did I say “Southern toad” as the tracemaker for the sequence of traces that start from the lower left and extend across the photo?
  • What indicates the behaviors listed and in that order: hopping, stopping, pooping, and alternate walking?
  • What signified the changes in behavior, and where did these decisions happen?
  • Why did I assume that most people don’t expect toads to walk (implying that they think they just hop)?

The first leap in logic – how did I know a Southern toad (Bufo (Anaxyrus) terrestris) was the tracemaker – was the easiest to make, as I’ve often seen their tracks in sandy patches of maritime forests and coastal dunes. These hardy amphibians leave a distinctive bounding pattern, with the front-foot impressions together and just preceding the rear-foot ones; the toes of their front feet also point inward. In the best-expressed tracks, you will see four toes on the front feet and five toes on the rear.

Close-up of bounding pattern (from lower left of previous photo), showing front-foot impressions just in front of and more central than the rear feet impressions. Direction of movement is from bottom to top of photo. (Photograph enhanced to bring out details, but originally taken by Gale Bishop.)

The only other possible animal that could make a trackway pattern confusable with a toad in this environment is a southeastern beach mouse (Peromyscus polionotus). Still, mice mostly gallop, in which their rear feet exceed their front feet as they move. Mouse feet are also very different from those of a toad, with toes on both feet all pointing forward (remember, toad toes point inward). So although dune mice live in the same environment as these tracks, these weren’t mouse tracks. The only alternative tracemakers would be spadefoot toads (Scaphiopus holbrookii) or a same-sized species of frog, such as the Southern leopard frog (Rana sphenocephala). But neither of these species is as common in coastal dunes as the Southern toad, so I’ll stick with my identification for now.

Mouse tracks – probably made by the Southeastern beach mouse (Peromyscus polionotus) – on costal dunes of Little St. Simons Island, Georgia. The two trackways on the left are moving away from you, whereas the one on the trackway on the right is heading toward you. All three show a gallop pattern, in which the larger rear feet exceeded the front feet. Scale = 10 cm (4 in). (Photograph by Anthony Martin)

The second conclusion – the types of behaviors and their order – came from first figuring out the direction of travel by the tracemaker, which from the lower left of the photo toward its middle. This shows straight-forward hopping up to the point where it stops.

From there, it gets really interesting. The wide groove extends to the left past the line of travel and had to be made by the posterior-ventral part of the toad’s body (colloquially speaking, its butt). This, along with the disturbed sand on either side of the groove, shows that the toad turned to its right (clockwise) and backed up with shuffling movement. That’s when it deposited its scat, which I’ve also seen in connection with toad tracks (and on St. Catherines, no less). This really helped me to nail down the identity of the tracemaker, almost being able to declare, “Hey, I know that turd!”

Southern toad bounding pattern that abruptly stops, followed by clockwise turning, backing up, and, well, making a deposit. (Photograph by Gale Bishop, taken on St. Catherines Island.)

How about the alternate walking? Turns out that toads don’t just hop, but also walk: right side, left side, right side, and so on. This pattern – also called diagonal walking by trackers – is in the remainder of the photo (with the direction of movement left to right). When toads do this, the details of their front and rear feet are better defined, and you can more clearly see the front foot registers in front of the rear and more toward the center line of the body.

This side-by-side movement is also what imparted a slight sinuosity to the central body dragmark, which was from the lower (ventral) part of its body, or what some people would call “belly.” In my experience, most people are very surprised to find out that toads can walk like this, which I can only attribute to sample bias. In other words, they’ve only seen frogs and toads hop away from them when startled by the approach of large, upright bipeds.

Close-up of alternate walking pattern and body dragmark made by Southern toad. Direction of movement is from upper left to lower right. (Photograph enhanced to bring out its details, but original taken by Gale Bishop on St. Catherines Island.)

But wait, what are those two dark-colored depressions in the center of the alternate-walking trackway? Well, it doesn’t take much imagination to figure those out, especially if you’ve already had a couple of cups of coffee. Yes, these are urination marks, and even more remarkable, there are two of them in the same trackway. So not only did this toad do #2, but also #1 twice.

Southern toad urination mark #1, not too long after doing #2. (Photograph by Gale Bishop.)

Urination mark #2 , which you might say was #2 of #1, but with both #1’s after #2, or, oh, never mind.

Notice that the second mark seems to have had less of a stream to it, which makes sense in a way that I hope doesn’t require any more explanation or demonstration.

So to answer to one of the questions above – what signified the changes in behavior – you have to look for the interruptions in the patterns, much like punctuation marks in a sentence. The commas, semi-colons, colons, dashes are all part of a story too, not just the words.

The summary interpretation of what happened. Let’s just say that this frog (or toad, whatever) didn’t come a courtin’.

Through the series of photos Gale shared in an album on Facebook, he also showed that he was following a protocol all good trackers do: he changed his perspective while observing the traces. Likewise, I teach my students to use this same technique when presented with tracks and other traces, that it’s a good idea to walk around them. While doing this, they see changes in contrast and realize how the direction and angle of light on the traces alters their perceptions of it. At some points, a track or other trace may even “disappear,” then “reappear” with maximum clarity with just a few more steps.

A different perspective of the same traces, viewed from another angle. Do you notice something new you didn’t see in the previous photo and its close-ups? (Photograph by Gale Bishop, taken on St. Catherines Island.)

Now, because I’m also a paleontologist, this interesting series of traces also prompts me to ask: what if you found this sequence of traces in the fossil record? Well, it’d be a fantastic find, worthy of a cover story in Nature. (That is, if the tracks somehow went across the body of a feathered dinosaur.) Right now, I can’t think of any trace fossils like this coming from vertebrates – let alone toads or frogs – so let’s go to invertebrate trace fossils for a few examples of similarly interconnected behaviors preserved in stone.

In 2001, a sequence of trace fossils was reported from Pennsylvanian Period rocks (>300 million years old), in which a clam stopped, fed, and burrowed along a definite path, with all of its behaviors clearly represented and connected. The ichnologists who studied this series of trace fossils – Tony Ekdale and Richard Bromley – reckoned these behaviors all happened in less than 24 hours; hence the title of their paper reflected this conclusion.

Ichnologists have a sometimes-annoying and always-confusing practice of naming distinctive trace fossils, giving them ichnogenus and ichnospecies names. (For a detailed discussion of this naming method, I talked about it in another blog from the dim, dark, distant past of 2011 here.) For instance, Ekdale and Bromley stated in their study that three names could be applied to the distinctive trace fossils made by a single clam, with each a different form made by a different behavior: Protovirgularia (burrowing), Lockeia (stopping), and Lophoctenium (feeding).

Along those lines, another ichnologist (Andy Rindsberg) and I also suggested that an assemblage of trace fossils in Early Silurian rocks (>400 million years old) of Alabama, with many different ichnogenera, were all made by the same species of trilobite. The take-home message of that study, as well as Ekdale and Bromley’s, is that a single species or individual animal can make a large number of traces. This also means that ichnodiversity (variety of traces) almost never equals biodiversity (variety of tracemakers).

So let’s go back to the toad traces, put on our paleontologist hats, and think about a “what if.” What if you found this series of traces disconnected from one another: the hopping trackway pattern, the diagonal walking pattern, the urination marks, the groove, and the turd, all found in disparate pieces of rock? Taken separately, such trace fossils likely would be assigned different names, such as “Bufoichnus parallelis,” “B. alternata,” “Groovyichnus,” “Tinklichnus,” and “Poopichnus.” (Please do not use these names beyond an informal, jovial, and understandably alcohol-fueled setting.)

Color, present-day version of the variety of traces made by a Southern toad (above), and a grayscale imagining of it fossilizing perfectly (below). Key for whimsically named ichnogenera in fossilized version: Bp = “Bufoichnus parallelis,” Ba = “Buofichnus alternata,” G = “Groovyichnus,” P = “Poopichnus,” and T = “Tinklichnus.” Please don’t cite this.

Granted, the environment in which Gale noted these traces – coastal dune sands – are not all that good for preserving what is pictured here, but other environments might be conducive to fossilization. To quote comedian Judy Tenuta, “It could happen!”

So if someone does find a fossil analogue to Gale’s evocative find on St. Catherines Island, I will understand their giving a name to each separate part, even if I won’t like it. The most important matter, though, is not what you call it, but what it is. And in this case, the intriguing story of toiletry habits left in the sand one July morning by a Southern toad is worth much more than any number of names.

Further Reading

Ekdale, A.A., and Bromley, R.G. 2001. A day and a night in the life of a cleft-foot clam: Protovirgularia-Lockeia-Lophoctenium. Lethaia, 34: 119–124.

Halfpenny, J.C., and Bruchac, J. 2002. Scats and Tracks of the Southeast. Globe Pequot Press, Guilford, Connecticut: 149 p.

Jensen, J.B. 2008. Southern toad. In Jensen, J.B., Camp, C.D., Gibbons, W., and Elliott, M.J. (editors), Amphibians and Reptiles of Georgia. University of Georgia Press, Athens, Georgia: 44-46.

Rindsberg, A.K., and Martin, A.J. 2003. Arthrophycus and the problem of compound trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 192: 187-219.

Marine Moles and Mistakes in Science

A first day of field work in the natural sciences can be expected to hold surprises, no matter what type of science is being attempted. Sometimes these are unpleasant ones, such as finding out the fuel gauge in your field vehicle – which you are driving for the first time, and in a remote place – doesn’t work. Other times, you make a fantastic discovery, like a new species of spider, a previously undocumented invasive plant, or a fossil footprint. But sometimes you see something that just makes you scratch your head and say, “What the heck is that?”, or more profane variations on that sentiment.

What is this long, meandering ridge making its way through a beach to the high tide mark on Sapelo Island, Georgia, and what made it? If you’re curious, please read on. But if you already know what it is, then you know a lot more than I did the first time I saw something like this. (Photograph by Anthony Martin.)

The last of those three scenarios happened to me on Sapelo Island, Georgia, in June 2004. My wife Ruth was with me, and we had just arrived on the island the previous afternoon, having stayed overnight at the University of Georgia (Athens) Marine Institute, or UGAMI. We decided that our first full morning in the field would be at Nannygoat Beach on the south end of Sapelo, which is a 5-minute drive or a 20-minute walk from the UGAMI.

We drove a field vehicle there (the gas gauge and everything else worked), parked, and took the boardwalk over the coastal dunes. Our elevated view from the boardwalk afforded a good look at many insect, ghost crab, bird, and mammal tracks made in the early morning. Circular holes punctured the dunes, made by ghost crabs (Ocypode quadrata). Sand aprons composed of still-moist sand were next to these burrow entrances, bearing crisply defined ghost-crab tracks, although early-morning sea breezes had already started to blur these.

At some point after walking onto the beach, though, we saw traces that we had not noticed in previous visits to Sapelo, and ones I have rarely seen there or on other Georgia barrier islands since. These oddities were meters-long, slightly sinuous to meandering ridges, about 15-20 cm (6-8 in) wide, extending in the sandy areas from the dunes through the berm and down to the high-tide mark, where they ended abruptly.

Same meandering ridge shown in the first photo, but viewed from the high-tide mark, showing how it connects with the primary dunes. Note how a few holes are punched in the part near me: more about those soon. (Photograph by Anthony Martin, taken on Sapelo Island, Georgia. P.S.: My wife Ruth is the scale in both photos, fulfilling one of the top 10 signs that I might be a geologist.)

Although a few ridges crossed one another, they rarely branched, and if they did, the branches were quite short, only about 10-15 cm (4-6 in). When we followed them to the dunes, they seemed to originate from some unseen place below the sandy surfaces. We investigated further by cutting through some of the ridges to see what they looked like inside. They turned out to be mostly open tunnels with circular cross sections about 5 cm (2 in) wide, slightly wider than a U.S. dollar coin. They were mostly hollow, and only occasionally did we encounter a plug of sand interrupting tunnel interiors. This supposition was backed up by ridges that had collapsed into underlying voids. A few of the ridges stopped with a rounded end the same diameter as the ridge, or as a larger, raised, elliptically shaped “hill.”

Ridge with quite a bit of meander in it. Check out the short branch toward the top right, where the tracemaker must have changed its mind and backed up, then continued digging toward the viewer. Scale = 15 cm (6 in). (Photograph by Anthony Martin, taken on Sapelo Island, Georgia.)

Two separate ridges intersecting, caused by one crossing the other, resulting in “false branching.” Also notice the partial collapse of sand into underlying hollow tunnels and how one of the ridges ends in a rounded mound. Scale = 15 cm (6 in). (Photograph by Anthony Martin, taken on Sapelo Island, Georgia.)

A short ridge ending in a raised, elliptical “hill,” connected to a partially collapsed tunnel that is not otherwise evident as an elevated surface. Same scale as before. (Photograph by Anthony Martin, taken on Sapelo Island, Georgia.)

Ruth and I agreed that these tunnels were burrows, instead of some random features made by the winds, tides, or waves. But by what? Clearly their makers were impressive burrowers, capable of digging through meters of sand. Their bodies also were probably just a little narrower than the burrow interiors, which helped us to think about body sizes. Then we considered where we were – dunes and beach – and what animals were the most likely ones to burrow in these environments.

A process of elimination – determining what they were not – was a good way to start figuring out their potential makers. For example, no way these burrows were from insects, such as beetle larvae, ant lion larvae, or mole crickets, because they were just too big. Insects also have a tough time handling salinity, so once they got to the surf zone with its saturated, saline sand, they would have had problems, or (more likely) an aversive reaction and turned around immediately instead of plowing ahead.

Insect burrow in coastal dune sand, made by a small beetle. Look at both the form and scale, and you’ll see this is not a match for what we were seeing. Scale in centimeters. (Photograph by Anthony Martin, taken on Cumberland Island, Georgia.)

Small mammals, like beach mice (Peromyscus polionotus), didn’t seem like good candidates either. Beach-mouse burrows are totally different from what we were seeing, and their burrows do not run all of the way down to the intertidal zone. Mice, like insects, also don’t like marine-flavored water; even if they might be able to temporarily tolerate it, they wouldn’t continue to burrow through moist, salty sand.

A beach-mouse burrow, with their tracks coming and going. Either the mice dug this burrow, or they occupied an abandoned ghost-crab burrow. Regardless, this also doesn’t match our mystery traces. Scale in millimeters. (Photograph by Anthony Martin, taken on Little St. Simons Island, Georgia.)

This led to an initial hypothesis that these burrows were from one of the most common larger burrowing animals in the area, and one comfortable in dune, berm, and beach environments with saturated, salty sand. These could only be from ghost crabs, I thought, an explanation supported by undoubted ghost crab burrows that perfectly intersected these tunnels, accompanied by undoubted ghost-crab tracks.

Ghost-crab burrows intersecting tunnels, accompanied by lots of ghost-crab tracks. Wow, that’s really convincing circumstantial evidence, wouldn’t you say? (Photograph by Anthony Martin, taken on Sapelo Island, Georgia.)

End of story, right? Well, no. I and a lot of other scientists have said this before, but it bears repeating: part of how science works is that in its practice we do not prove, we disprove. I somehow knew the “ghost crab burrowing horizontally through meters of sand from the dunes to the beach” hypothesis was a shaky one, and it bothered me that it just didn’t seem right. So I started reading as much as possible about ghost-crab burrowing behaviors. I thought I already knew a lot about this subject, but nonetheless was willing to acknowledge that there might be some holes in my learning (get it – holes?) that needed filling (get it – filling? Oh, never mind).

The gentle reader probably surmised what happened next. That’s right: not a single peer-reviewed reference mentioned ghost crabs digging meters-long shallow tunnels from the dunes to the beach. So either I was wrong, or I had documented a previously unknown and spectacular tracemaking behavior in this very well-studied species. A single cut by Occam’s Razor simply said, “You’re wrong.”

You thought I made long horizontal burrows that go all of the way from the dunes to the surf zone? Wow, you primates are dumber than I thought. (Photograph by Anthony Martin, taken on Sapelo Island, Georgia.)

If not a ghost crab then, what else could make meters-long horizontal burrows of the diameter we had seen? This is when I began to reconsider my original rejection of moles as possible tracemakers.

So what am I: chopped liver? (Photograph from Kenneth Catania, Vanderbilt University, and taken from Wikipedia.org here.)

Here’s what was the most interesting about this mistaken interpretation: it was made because of where we were. In other words, our initial mystification about these traces stemmed from their environmental context. Had we seen these burrows winding down a sandy road in the middle of a maritime forest on Sapelo Island, we would not have hesitated to say the word “mole.” Yet because we saw exactly the same types of burrows in coastal dunes and beaches, we said, “something else.”

A long, meandering mole burrow in the sandy road going through a maritime forest on the north end of Sapelo Island. So if you see a burrow like this in the forest, you instantly say “mole.” But if you see it on the beach, you say, “Um, uh, duh…must be something else!” My tracks (size 8 1/2, mens) and 15 cm (6 in) photo scale for, well, scale. (Photograph by Anthony Martin.)

Another long, meandering ridge ended in a rounded “hill,” a trace that no one would hesitate to call a mole burrow, especially because it’s in the middle of a maritime forest. (Photo by Anthony Martin, taken on Sapelo Island, Georgia.)

A trip back to the literature further confirmed the mole hypothesis while also serving up a big slice of humble pie. I was embarrassed to find that these same burrows were described and interpreted as mole burrows in an article published in 1986. Even more mortifying: my dissertation advisor (Robert “Bob” Frey) was the first author on the article; it had been published while I was doing my dissertation work with him; and I had read the article years ago, but didn’t remember the part about mole traces. It was like these burrows were saying to me, “Go back to school, young man.”

OK, so these are mole burrows. Case closed. Now that we’ve identified them, we can stop thinking about them, and go on to name something else. But that ain’t science either, is it? This one answer – mole burrows – actually inspires a lot of other questions about them, which could lead to heaps more science:

Which moles made these burrows? The Georgia barrier islands have two documented species of moles, the eastern mole (Scalopus aquaticus) and star-nosed mole (Condylura cristata). Of these two, eastern moles are relatively common on island interiors, whereas star-nosed moles are either rare or locally extinct from some of the islands. But star-nosed moles are also more comfortable next to water bodies and seek underwater prey. So could these traces actually signal the presence of star-nosed moles in dune and beach environments? Frey and his co-author, George Pemberton, originally interpreted these as eastern mole burrows, but they also didn’t eliminate the possibility of star-nosed moles as the tracemakers, either.

What is the evolutionary history of moles on the Georgia barrier islands? Are these moles descended from populations isolated from mainland ones 10,000 years ago by the post-Pleistocene sea-level rise, or do they represent more modern stock that somehow made its way to the islands? A genetic study would probably resolve this issue, but who the heck is going to compare the genetic relatedness of moles from the Georgia barrier islands to those on the mainland?

What were they eating? Moles don’t just burrow for the exercise, but for the food. While burrowing, they are also voraciously chowing down on any invertebrate they encounter in the subsurface. But what would they eat in beach sands? As many shorebirds know, Georgia beaches are full of yummy amphipods, which would likely more than substitute for a mole’s typical earthworm and insect-filled diet in terrestrial environments. Yet as far as I can find in the scientific literature, no one has documented mole stomach contents or scat from coastal environments to test whether these small crustaceans are their main prey or not.

What happened to these moles once their burrows got to the surf zone? Did they turn around and burrow back, or did they go for a swim in the open ocean? The latter is actually not so far fetched, as moles are excellent swimmers, especially star-nosed moles. But how often would they do this?

Just how common (or rare) are these burrows in beaches? Just because I just perceive these burrows as rare could be an example of sample bias. Yes, I wrote an entire book about Georgia-coast traces and tracemakers and have done field work on the islands since 1998. But I don’t live on the Georgia barrier islands, nor have I spent more than a week continuously on any of them. Keenly observant naturalists who live on the islands or otherwise spend much time there could better answer this question than me. I suspect they’re actually much more common than I originally supposed, and now look for them to photograph or otherwise document whenever I go back to any of the islands.

Would such burrows preserve in the geologic record? Probably so, especially if they were made in dunes and filled with a differently colored or textured sand. But I’ll bet that nearly every paleontologist or geologist would make the same mistake I did, and reach for a burrowing marginal-marine crab or some other invertebrate as the tracemaker.

Geologists would be further fooled if fossil mole tunnels were intersected by genuine ghost-crab burrows, which would constitute a great example of a composite trace made by more than one species of animal. But why did the crabs burrow into the mole tunnels? Because it was easier. After all, the moles left hollow spaces and loosened sand over wide areas, practically begging ghost crabs to exploit these disturbed areas.

Anyway, I doubt many geologists would think of a small terrestrial mammal as a tracemaker for such burrows in sedimentary rocks formed in marginal-marine environments, although I’d love to be proved wrong on this. I’m hoping my writing about it here will help to prevent such confusion, and that whoever benefits from it will buy me an adult beverage as thanks.

In summary, this example of making a crab burrow out of a mole tunnel thus serves as a cautionary tale of how where we are when making observations in the field can influence our perceptions. But it also goes to show us how our wonderment with what we observe in natural environments can be renewed and encouraged by daring to be wrong once in a while, and learning from those mistakes.

Further Reading

Frey, R.W., and Pemberton, S.G. 1986. Vertebrate lebensspuren in intertidal and supratidal environments, Holocene barrier island, Georgia. Senckenbergiana Maritima, 18: 97-121.

Gorman, M.L., and Stone, R.D. 1990. The Natural History of Moles. University of Chicago Press, Chicago, Illinois: 138 p.

Harvey, M.J. 1976. Home range, movement, and diel activity of the eastern mole, Scalopus aquaticus. American Midland Naturalist, 95: 436-445.

Henderson, R.F. 1994. Moles. Prevention and Control of Wildlife Damage, Paper 49, University of Nebraska, Lincoln: D51-58. (Entire text here.)

Hickman, G.C. 1983. Influence of the semiaquatic habit in determining burrow structure of the star-nosed mole (Condylura cristata). Canadian Journal of Zoology, 61: 1688-1692.

Darwin, Worm Grunters, and Menacing Moles

In my most recent previous post, I teased readers with the promise of revealing how Charles Darwin used a piano as a scientific tool for studying the behavior of earthworms. Regardless of whether or not you already looked up the answer through The Google, by reading Darwin’s last book (The Formation of Vegetable Mould through the Action of Worms with Observations on Their Habits), or other means, I will now gladly make connections between the seemingly disparate subjects of Darwin’s musically inclined experimentation, earthworm behavior, and fishermen of the southeastern U.S. catching earthworms as bait.

What makes this earthworm (Diplocardia) run away as fast as its little chetae, mucus, and peristalic movement can carry it through the soil? Let’s just say it’s not picking up good vibrations. Photograph by Bruce A. Snyder, from here, from www.discoverlife.org.

In writing about earthworms and their traces in my upcoming book, I devoted several pages to Mr. Darwin’s fascination with earthworms. In this exploration, I tell how Darwin was on to something when he tried applying sound – which included those made by playing musical instruments – to earthworms he had gathered from the English countryside. These musical performances were not an instance of Darwin trying to entertain these worms, boost their self esteem, or otherwise help them get in touch with their emotions. Rather, he was simply testing whether worms reacted to sound. What happened? Well, instead of me describing his results, I’ll let Darwin’s words inform you directly:

Worms do not possess any sense of hearing. They took not the least notice of the shrill notes from a metal whistle, which was repeatedly sounded near them; nor did they of the deepest and loudest tones of a bassoon. They were indifferent to shouts, if care was taken that the breath did not strike them. When placed on a table close to the keys of a piano, which was played as loudly as possible, they remained perfectly quiet.

Charles Darwin, The Formation of Vegetable Mould through the Action of Worms with Observations on Their Habits (1881), p. 27.

Hence it was with deep appreciation last month when I gazed at the piano in the drawing room of Down House, the former Darwin family home, and thought about these experiments. Smiling, I imagined Darwin carefully watching a container of worms while he or someone else in his family forcefully banged on the keys of this piano. Of course, you also can’t help but wonder what was played “as loudly as possible.” Were these single, random notes, chords, or actual musical compositions? If the last of these, what pieces were played? Ideally, I like to think Mr. Darwin or one of his family members played a sea shanty learned during his days on The Beagle (or perhaps even songs learned from pirates), rather than just pounded random notes up or down a scale.

As conclusive as Darwin’s paragraph might seem about the lack of earthworm reactions to sound, he, like any good storyteller, then injected a dramatic twist when reporting his results. He followed up the preceding paragraph with one describing how earthworms, although deaf, are extremely sensitive to vibrations transmitted through solid media. Here he revealed exactly which notes were played (C on the bass clef, G in the treble clef, C in the treble clef) while two worms were in pots placed on top of the piano.

The vibrations transmitted through solid media – not air – caused the worms to withdraw from the soil surface, presumably hiding from the source of the vibrations. As an extension of this experiment, Darwin also used a fork to agitate the soil underneath other worms, which then provoked them to move up to the surface. Darwin correctly surmised that this stirring activity, like sound, also sent vibrations through the soil, which likewise produced aversive reactions in the earthworms.

These responses made sense in an evolutionary way, and show how Mr. Darwin was applying his principle of natural selection to the predator-prey relationships that had evolved between earthworms and moles. The behaviors he observed would have favored the survival of earthworms that associated vibrations with their most feared predators, and reacting accordingly, which is to say, fleeing in terror. And just what were their aversion-inducing predators? They were not robins or other species of birds – early, punctual, or otherwise timed – but the earthworm version of graboids: burrowing moles.

Eastern mole (Scalopus aquaticus) emerging from its burrow, seeking earthworms and other fresh food. Photograph by Kenneth Catania, from Fairfax County Schools.

Graboid emerging from its burrow, seeking humans and other prey. Note the eerie resemblance of its behavior to that of an eastern mole, albeit orders of magnitude larger and accompanied by a keen interest in large, surface-dwelling, bipedal prey. Photo from Wikipedia, but originally taken from the greatest ichnologically inspired horror film of all time, Tremors.

So you didn’t know about graboids, those burrowing predators of the underworld? Fortunately, this educational video provides all of the details you need to know. But if you’re interested in studying their neoichnology, be careful, and stay on the pavement.

As yet another example of ‘backyard science,” Darwin observed many traces of the European mole (Talpa europaea) in the fields just outside Down House, most of which were their mounds, or “molehills.” Indeed, last month as I admired one of Darwin’s original wormstones in the pasture behind Down House, I also noticed a good number of molehills on the grounds. Rather stupidly, I neglected to take a photo of one of these. (I mean, how cool would it have been to share images of the traces of moles that descended from those whose traces Darwin noticed?) Nonetheless, some of my photos of the grassy area near the wormstone show 20-30 cm wide bare patches in this otherwise meticulously maintained lawn. These spots, I suspect, are traces of the Down House groundskeepers, who probably level molehills as quickly as they appear, an ichnological version of “whack a mole.”

The pasture just behind Down House (Charles Darwin’s former home), with a “wormstone” in the lower right, and a few bare patches of ground just to the left. Could the latter mark recent sites of mole tunnels and molehills leveled by Down House groundskeepers, or are these just places where grass did not grow, and hence the products of an ichnologist’s overactive imagination? Anyway, I did see molehills out there, but don’t blame y’all for being a bunch of skeptical scientists and wanting more evidence than my just saying so.

OK, now how does all of this wonderfully elucidated Victorian-era science relate to the ecosystems and biota of the southeastern United States? Enter the “worm grunters.” Worm grunters are people who, independently of Darwin, figured out the same adaptive responses of earthworms to underground vibrations. Through their own experiments, worm grunters, who were interested in efficiently gathering many worms in a short time for putting on fishhooks (or making money selling earthworms to people who put them on hooks), rubbed steel slabs across the top of wooden posts stuck in the ground. Much later, researchers interested in finding out how this technique worked calculated frequencies of the seismic vibrations that caused earthworms to flee upward away from perceived predators.

The southeastern U.S., including the Georgia barrier islands, not only has its own species of earthworms (Diplocardia mississippiensis), but also has its own species of moles: the eastern mole (Scalopus aquaticus) and the less common star-nosed mole (Condylura cristata). Both types of moles no doubt strike fear in the multiple hearts of earthworms, and natural selection being how it is, the fastest burrowing moles (who are most likely to catch worms) also cause considerable vibrations from their digging. This accordingly means the earthworms that detect and escape these vibrations live long enough to reproduce and pass on whatever genes that aided in such perceptions.

In getting caught by this mole, this earthworm may have just won the worm equivalent of a Darwin Award, depending on whether it had reproduced or not. (Which it probably did, considering earthworm hermaphroditism means they are at least twice as likely to get lucky.) Photo from University of Illinois Extension; Home, Yard, and Garden Pests Newsletter, here.

Thus a visit to Down House in southern England and consideration of Darwin’s contributions to ichnology and behavioral ecology are not so far removed conceptually from the practical knowledge gained by some people in parts of the southeastern U.S. Moreover, many of these same people are of English, Irish, or Scottish descent, and effectively applied the same knowledge surmised by Darwin about worms and moles, which is kind of neat in a heritage sort of way.

Would all of these findings count as applied science, despite its historical lack of Ph.D.-bearing investigators, grant funding, publications, and press conferences announcing the results? Yup. After all, science is about its methods.

So next week, we’ll take a closer look at the traces moles make on the Georgia barrier islands. Do these moles just go after earthworms in the forests and meadows of those islands? Nope. After all, science is not just about its methods, but also surprises.

Further Reading

Darwin, C. 1881. The Formation of Vegetable Mould through the Action of Worms, with Observations on their Habits. John Murray, London, U.K.: 326 p.

Edwards, C.A., and Bohlen, P.J. 1996. Biology and Ecology of Earthworms (3rd Edition). Springer, Berlin: 426 p.

Gorman, M.L., and Stone, R.D. 1990. The Natural History of Moles. University of Chicago Press, Chicago, Illinois: 138 p.

Hendrix, P.F. 1995. Earthworm Ecology and Biogeography in North America. CRC Press, Boca Raton, Florida: 244 p.

Mitra, O., Callaham, M.A., Jr., and Yack, J.E. 2009. Grunting for worms: seismic vibrations cause Diplocardia earthworms to emerge from the soil. Biology Letters, 2009: 16-19.

Of Darwin, Earthworms, and Backyard Science

On the other hand, I sometimes think that general & popular Treatises are almost as important for the progress of science as original work.

– Charles Darwin, in a letter to Thomas Huxley, written in his home (Down House) on January 4, 1865

A combined blessing and burden that comes with travel, especially to new places, is the memory we carry of other places. The blessing part comes from the opportunity to connect previously disparate bodies of knowledge and experiences. This is always exciting for anyone who likes that sort of thing, while also satisfying purported promoters of “interdisciplinarity” (which was probably not a word until academia invented it, then pretended to reward those who practice it). On the other hand, the burden is that these thoughts of previous places can act as a veil, obscuring or overlaying our perception of novel sensations. In extreme cases, these remembrances can smother original ideas, especially if the places of our past are idealized and held as some worldly standard to which all other things must be compared.

What does this roundish stone, lying in the ground of the English countryside south of London, have to do with life traces of the Georgia coast? Good question, and if you’d like the start of an answer, please read on.

This Janus-like duality of travel occurred to me after my wife (Ruth) and I left Georgia for a few weeks of vacation in the United Kingdom, yet once there, I thought about my original home of Indiana and the barrier islands of Georgia. Ruth had never been to the U.K., and I hadn’t visited since attending an ichnology conference and field trip in Yorkshire, held in 1999. Fortunately, Ruth has a friend on the northeastern side of London who generously offered us a place to stay before we headed elsewhere. This refuge gave us a few days to learn what London had to offer us while we otherwise adjusted to cultural and temporal differences.

Among the myriad of educational opportunities in the London area is one that had been on my mind for quite a while, thanks to my writing about the Georgia coast. This was an intended visit to Down House, the former home of Charles Darwin and his family. Down House is located in a rural setting of the greater London area – Downe Village in the former parish of Kent – well southeast of Big Ben and all of the other typical touristy trappings of downtown London. Still, it can be visited via public transportation, which became doable for us Yanks once we figured out the needed connections in the intricate rail and bus system weaving throughout the London area.

From where we were staying, it took us nearly two hours to reach Down House. It was a mildly aggravating sojourn by train and bus, but made much better once we realized that driving there in London traffic with a hired car would have been far worse for both us and other people sharing the road (or sidewalk, as it may be). After our bus dropped us off in Downe Village, we saw a small sign pointing the way to Down House, and walked for  15 minutes on a quiet, country road before reaching our goal, a stroll only occasionally interrupted by brief terror induced when cars approached from the direction opposite of our expectations.

 When you step off the bus in Downe Village, this is one of the few clues that you’re near Darwin’s home, a place where scientific thought and human history changed in a big way.

A signpost in Downe Village provides a clue that Darwin has something to do with this area, although some horse named “Invicta” gets equal billing, and “St Mary the Virgin” gets bigger typeface. Still, it was nice to see Darwin’s visage there, too.

Blink and you’ll miss it: after walking about 10 minutes down the road, here’s the sign pointing the way to Down House. Personally, I thought it could use a neon fringe, or at least some DayGlo™ colors, but subdued is probably the way Darwin would have liked it.

We were also a little surprised at the subdued signage pointing us in the right direction to our goal, and I mused briefly about the homes of people who had far less impact on the advancement of human knowledge and world perspectives whose homes are accorded far more attention and adulation. (Yes, I’m looking at you, Graceland.)

The front of Down House, the home of Charles Darwin and his family from 1842 and after his death in 1882.

Down House is both modest and grand, not palatial at all, but impressive inside. Rooms on the second floor (or first floor, if you live in the U.K.) hold displays with a neatly presented synopsis of Darwin’s life and scientific findings, starting with his little boat journey in 1831-1836 through his grand synthesis of evolutionary principles. The ground floor of the house is more or less restored to the time when the Darwin family lived there, with particular attention paid to Mr. Darwin’s study, which was his main writing and experimentation room, or what modern-day scientists might call his “research space.” This is where On the Origin of Species and most other books of his were born. Infused with a purely fan-boy sort of joy, I was thrilled to be in the same place where many of his revolutionary ideas about evolution became expressed through words.

However, one item in the family living room (drawing room) intrigued me in a special way. It was a piano. This object was certainly used for the enjoyment of Darwin family members and guests, with the degree of delight of course depending on the proficiencies and musical choices of whoever played it. But then I was reminded – by the disembodied voice of Sir David Attenborough, no less – that this was not just a musical instrument, but also a scientific tool. (Disappointingly, Sir Attenborough volunteered this information in a recorded audio tour provided with admission to Down House, not through clairvoyance in a Sir Arthur Conan Doyle sense.) On this piano in the room and in the nearby Down House backyard are the places where Darwin conducted some of the earliest quantitative experiments in the behavioral ecology and neoichnology of terrestrial infauna. Or, in plain English, Darwin used this piano and a few other tools to measure and test the behavior of earthworms as tracemakers in soil.

The rear of Down House, with the two windows to the left looking into the drawing room, where the Darwin family piano is located. Unfortunately, photographs are not allowed in the interior of Down House, hence the external, voyeuristic perspective.

Darwin enthusiasts know well that the last book Darwin wrote was about a personal passion of his, the biology and behavior of earthworms. This book, titled The Formation of Vegetable Mould through the Action of Worms with Observations on Their Habits (1881), encapsulates many observations and conclusions he made from his long-term study of the oligochaete annelids that lived abundantly in the backyard and gardens of Downe House. As some biographers have noted, Darwin became quite a homebody after his years of voyaging on The Beagle, and he stayed close to Down House for much of his life after moving there in 1842. Nonetheless, this geographically restricted lifestyle did not mean he stopped inquiring about the natural world around him. On the contrary, he carried out intensive studies in and just outside of Down House, some of which dealt with earthworms, a subject that interested him for more than half of his life.

Darwin’s wonderment at worms was jump-started by something he noticed nearly thirty years after he innocuously tried to improve the soil in the pasture behind Down House. Told that he could get rid of mossy areas by laying down cinders and chalk, he obediently did so, and checked those same areas 29 years afterwards. It turned out the anomalous sediments had been buried about 18 cm (7 in) below the surface.

Darwin soon suspected this surface was newly made, formed by generations of earthworms bringing up soil over the preceding three decades. Through the technical support of his son Horace, an engineer, Darwin began to measure just how much earth an earthworm could worm. He already knew that earthworms burrowed through, consumed, and defecated sediment, which resulted in thoroughly mixed and chemically altered soils. So using his geologically inspired sense of time and rates of processes, he also rightly imagined that the daily activities of earthworms, multiplied by millions of worms and enough years, changed the very ground underneath his feet in a way so that it, well, evolved.

Ever the good scientist, though, Darwin tested this basic idea through experimentation. His assessment was accomplished through a precise measuring device invented by his son and flat, circular rocks, nicknamed wormstones, which were set out in the backyard of Down House. Based on my visual and tactile examination of the one wormstone that still lies outside of Down House, it looked like a quartz sandstone. However, out of respect for it and its ichnological and historical heritage, I did no other tests of its composition.

One of Darwin’s original “wormstones” (foreground center) placed in a pastoral setting behind Down House. Paleontologist Barbie (just behind the wormstone), who has accompanied me for much field work on the Georgia coast, helpfully provides scale.

Close-up view of wormstone, showing three metal slots set into a central ring and two rods, which provided the datum for measuring change in the wormstone’s depth over time. £10 note (with Darwin’s portrait on the right) for scale.

The experiment was elegantly simple. Using a device invented by Horace in 1870 (illustrated below, and photo here), the surface of the wormstone was measured relative to the height of the surrounding soil surface. This change in relative horizon was discerned by fitting the device on three metal slots that had been added to the edge of a central hole in the wormstone. Metal rods inserted through this same hole were connected to underlying bedrock, ensuring that these would stay stationary as worms churned the surrounding soil. Thus these rods acted as a horizontal datum through which any changes in the ground surface could be compared.

Illustration of Horace Darwin’s “wormstone measuring instrument,” with “K” pointing to where the instrument was placed to contact with the metal rods; the change with each measurement over time between this and “A” (a metal ring) would then show how much the stone had sunk downward. My source of this figure is from an online PDF by the Bromley Partnerships, Discover Darwin: An Education Resource for Key Stage Two, but its primary source is not cited there, and I could not otherwise find an attribution.

Darwin figured that the burrowing activity of earthworms underneath the stone, as well as sediment deposition at the surface as fecal castings, would result in the stone “sinking” over time, becoming buried from below. He was right. Using the wormstone and Horace’s measuring device, he calculated the approximate rate of sinking (2.2 mm/year). This was also a measure of soil deposition, which he attributed to earthworms depositing the sediment through fecal castings. Extrapolating these results further, he estimated that 7.5 to 18 tons (6.8-16.4 tonnes) of soil were moved by worms in a typical acre (0.4 hectares) of land.

Something very important to remember in Darwin’s approach to this study was that he was not just a biologist, but also an excellent geologist, taught early in his career – and later befriended – by one of the founders of modern geology, Charles Lyell. Consequently, he had a long-term view of how small, incremental changes every year added up to big changes over time. Or, to put it in Darwin’s own words (The Formation of Vegetable Mould, p. 6), when he responded to a critic claiming that earthworms were too small and weak to have any large-scale effect on their surroundings:

Here we have an instance of that inability to sum up the effects of a continually recurrent cause, which has often retarded the progress of science, as formerly in the case of geology, and more recently in that of the principle of evolution.

Darwin wasn’t just a quantitative ichnologist, but he also described and illustrated some of the traces made by earthworms, such as their burrows, aestivation chmabers, fecal pellets, and turrets made by their fecal casts. (Much later, in 2007, South American paleontologists described fossil examples of fecal pellets and aestivation chambers from Pleistocene rocks of Uruguay.) Darwin even noted the orientations and species of leaves earthworms pulled into burrows to plug these (p. 64-82), then he independently tested these results with pine needles and triangles of paper (p. 82-90)!

Illustrations of turrets made by fecal pellets of earthworms, in The Formation of Vegetable Mould through the Action of Worms with Observations on Their Habits (1881): from left to right, Figure 2 (p. 107), Figure 3 (p. 124), and Figure 4 (p. 127).

In short, Darwin, through combining his vast knowledge of biology with geological principles, had all the right stuff to make for a formidable ichnologist. Even better, he was keenly interested in the ichnological processes happening just outside his house, and didn’t feel the need to take a long boat trip to watch these processes in some far-off, exotic land. Unknowingly, he was also providing an example of how to do “backyard science” long before this term became associated with cost-effective means for introducing children to nature observation.

All of this marvelous research done by Darwin, culminating in his writing a book at Down House that ended up being one of his most popular, leads me to a bit of a mini-rant, followed by my connecting this science to my homes of Indiana and Georgia, and ending with a message of hope, if I may.

Darwin’s earthworm research epitomized the sort of long-term, DIY experimentation that seemingly only Darwin could have done, and in his day. In contrast, to show how far science has changed since his time, the current profit-oriented business model afflicting modern research universities might have demanded Darwin write a multi-million dollar (or pound) grant to conduct this study. (I suppose the piano would have been the most expensive item on the equipment list, and the wormstones the least.)

Moreover, in this hypothetical scenario, Darwin only could have written such a grant after “pre-confirming” most of his results by publishing a series of research papers. And not just by publishing these papers, but also by making sure they were in prestigious journals, most of which would require expensive subscriptions to read, ensuring that only a small handful of people would read about his work. (A book written for a popular audience? Please.) Had Darwin been a young man, the completion of a 30-year-long study also would have depended on whether he was granted tenure early on. This likely would have been decided by people with little or no expertise in geological processes, earthworms, and bioturbation, but who could certainly count grant revenue and compare journal impact factors.

Fortunately, though, Darwin was independently wealthy, well established as a senior scientist, and never had to worry about tenure or other such trivial matters. Instead, he could just focus on studying his much beloved worms, then think of how to share his vast knowledge of them with a broader audience. Darwin never used the word “ichnology” in his writings, let alone “neoichnology,” and he wrote a book on this topic for natural-history enthusiasts, rather than through a series of research papers published in inaccessible journals. Nonetheless, in his own way, he surely advanced the popularization of ichnology through his slow, deliberate, careful, and imaginative methods, which he combined with a desire to communicate these results to all who were interested.

How does all of this link with Indiana and Georgia? Well, Darwin’s “backyard science” reminded me of how I, like many naturalists of a certain generation, grew up learning about nature through what was in my own backyard. Today I have no doubt that my fascination with the behavior and ecology of insects, plants, and yes, earthworms in my Indiana backyard all contributed to a subsequent desire to do science outside as an adult. To satisfy this urge, I later picked geology as my main subject of study, but also took advantage of my biological leanings by concentrating on ichnology in graduate school. My living in Georgia since 1985 and other serendipitous events then eventually led to my writing a book about traces of the Georgia barrier islands (being published through Indiana University Press). In one chapter of this book, when I introduce earthworms as tracemakers, I made sure to write at least a few pages about Mr. Darwin and his experiments with earthworms. So although Darwin never traveled to Indiana or the Georgia coast, I carried my boyhood and adult experiences of both places in my mind to his former home.

Now here’s the hopeful message (not to be confused with a “hopeful monster“). Lots of field-oriented scientists spend much of their time outside for their research, and many require only modest amounts of money for their studies. So what they have begun to do is side-step the reigning corporate mentality influencing so-called “big science” at universities, while also making active attempts to better connect their research with more people than their academic peers. Through organized efforts like The SciFund Challenge and other crowd-sourcing methods, scientists are seeking small personal donations from the public, allowing them to better focus on their research, rather than spending much time, energy, and angst in writing massive research grants that have little chance of being funded. Thus much like earthworm castings, these  donations add up over time and provide rich, fertile ground for conducting basic science. (OK, maybe not the best metaphor, but you get the point.)

Another facet of this research is the stated commitment of scientists to report their research progress through blogs, then publish their peer-reviewed results in open access journals, which provide articles free for anyone with an Internet connection and curiosity in a scientific subject. All of this means that small investigations with big implications – like Darwin’s study on earthworms – are more likely to happen, and are better assured of reaching a public eager to learn about these sciences, while giving the opportunity for people to witness the direct benefits of their investments.

So how does the Darwin family piano relate to his study of earthworms? Do the southeastern U.S., earthworms, and Darwin’s study of their behavior somehow intersect? In answer to the first question, it’s interesting, and in answer to the second, yes. But an explanation of both will have to wait until next time.

In the meantime, if you go out for a walk later today, pay attention to the ground beneath you, and think of how it reflects an ichnological landscape, a result of collective traces made by those “lowly” earthworms, and how Charles Darwin clearly explained this fact in 1881. For me, it was an honor to stand in the same area where Darwin made his measurements, used his humble instruments, and applied his fine mind; this despite my later realization that I was standing on a new ground surface relative to where Darwin stood. After all, 130 years has passed since his death, meaning the ground had been recycled by descendants of the same earthworms he watched with his appreciative and discerning eyes. All of which makes for a different kind of descent with modification, one that instead reflects an ichnological perspective well articulated and appreciated by Darwin.

Darwin’s “sandwalk,” a walking route behind Down House he often took to help with his thinking, and a visible trace today of Darwin’s legacy as one of the first popularizers of ichnology.

Further Reading

Darwin, C. 1881. The Formation of Vegetable Mould through the Action of Worms with Observations on Their Habits. John Murray, London: 326 p. (A scan of the original book, converted to a PDF document, is here.]

Pemberton, S. George and Robert W. Frey. 1990. Darwin on worms: the advent of experimental neoichnology. Ichnos, 1: 65-71. (Text for article here.)

Quammen, D. 2006. The Reluctant Mr. Darwin: An Intimate Portrait of Charles Darwin and the Making of His Theory of Evolution. W.W. Norton, New York: 304 p.

Verde, M., Ubilla, M., Jiménez, J.J., and Genise, J.F. 2006. A new earthworm trace fossil from paleosols: aestivation chambers from the Late Pleistocene Sopas Formation of Uruguay. Palaeogeography, Palaeoclimatology, Palaeoecology, 243: 339-347.

 

 

Life Traces as Cover Art

I’ve been a long-time admirer of the artistic appeal of tracks, trails, burrows, nests, and other traces of animal behavior. My fondness for the beauty of traces also no doubt contributes to my science: after all, the longer I look at a trace, the more I learn about it. This sentiment accords with a long-time principle of paleontology, botany, and other facets of natural history, which is, “If you draw it, you know it,” with the added benefit of expressing your appreciation of natural objects to others through visual depictions.

Here it is: the cover for my upcoming book, Life Traces of the Georgia Coast: Revealing the Unseen Lives of Plants and Animals! The book is scheduled to be published by Indiana University Press in the fall of 2012, so be watching out for it then. But in the meantime, look at the beautiful cover art. Who created it, what inspired it, and what science lies behind its aesthetically pleasing composition? Please read on to find out.

My thinking about traces as objects of art is not very original, though, and in fact has been preceded by most of humanity. For example, animal tracks and other traces were common subjects of rock art extending back to the Pleistocene Epoch. Whether made as pictographs or petroglyphs, these traces of traces are in Australia, southern Africa, Australia, and Europe, with some tens of thousands of years old. Based on this tantalizing evidence, one could reasonably propose that the representation of animal traces through art composes an intrinsic part of our heritage as a species. Yes, I know, that’s a tough hypothesis to pursue any further. So I’ll leave it to my paleoanthropologist colleagues to work out (or not).

Petroglyphs that likely represent bird tracks, etched in Triassic sandstone by Native Americans hundreds of years ago (sorry, I’m a paleontologist, not an archaeologist). The pair of marks on the right is similar to the tracks made by a perching bird with three forward pointing toes and one rearward-pointing toe – such as an eagle – whereas those to the right may be like those of a roadrunner, which has an X-shaped foot. Petroglyphs are in northeastern Arizona, near Petrified Forest National Park.

Much more recently, trace fossils similarly inspired renowned ichnologist Dolf Seilacher, who also saw these vestiges of past behavior as lovely objects that fill us with wonder. As a result, in the mid-1990s, he conceived of a traveling exhibit and book showcasing tableaus of trace fossils and other sedimentary structures, titled Fossil Art. For this show – embraced by natural-history venues but mostly rejected by art museums – Seilacher prepared it by: (1) making latex molds of sedimentary rock surfaces; (2) pouring epoxy resin into the molds to make casts mimicking the original bedding planes; and (3) using indirect lighting to enhance details; and (4) assigning creative titles to each piece as if they were works of art.

So these artificial slabs are not human-made art in the traditional sense, but nonetheless invoke marvel, project splendor, and otherwise make us think, engaging the same senses and thought processes that accompany an appreciation of art. Moreover, the slim book Seilacher authored for the exhibit contains explanatory text about each of the objects, illuminated further by his marvelous illustrations and visual interpretations. I remember first seeing a version of this exhibit in Holzmaden, Germany in 1995, near Seilacher’s home in Tubingen, and most lately enjoyed strolling through it with other many ichnologists – and Seilacher himself – in Krakow, Poland in 2008.

World-renowned ichnologist and (oh yeah) Crafoord Prize winner, Dolf Seilacher, lecturing about the planning and execution of Fossil Art as an exhibit while it was showing at the Geological Museum of Jagiellonian University in Krakow, Poland in September 2008. Photograph by Anthony Martin.

A close-up of Wrong Sided Hands, one of the pieces displayed in Fossil Art, cast from a latex mold of a sample from Lower Triassic Buntsandstein of Germany. The piece is so-called because the false appearance of a “thumb” on the outside of the tracks originally led to the mistaken idea that the animal awkwardly crossed its own path with each step. This turned out to be wrong. Also, check out the mudcracks! Photograph by Anthony Martin.

Another close-up of a piece from Fossil Art, titled Shrimp Burrow Jungle (helpfully translated into Polish here). This one is based on burrow systems made by crustaceans during the Late Triassic in Italy, which became densely populated over time and hence contributed to overlapping systems. Photograph by Anthony Martin.

Hence during my writing of a book about the modern traces of the Georgia barrier islands, I was well aware of how some of these traces could likewise lend to artistic expression. Some of this mindfulness was applied to a collaborative artwork done with my wife, Ruth Schowalter, in which we took an illustration of mine from the book and used it as the inspiration for a large watercolor painting depicting traces that would form with rising sea level along the Georgia coast (discussed in detail here).

Nonetheless, it was especially important to think about traces as art when considering a potential cover for the book. Book authors know all too well that a well-designed, attractive cover is essential for grabbing the attention of a potential reader, so I had that practical consideration in mind. But I also wanted a cover that pleased me personally, sharing my love of beautiful traces with others, especially those varied and wondrous tracks, burrows, and trails I had seen and studied on the Georgia barrier islands during the past 15 years.

In such an endeavor, I also faced the added pressure of precedence set by my publisher, Indiana University Press. My book is part of a series by IU Press, called Life of the Past, which is widely admired not only for its comprehensive coverage of paleontological topics, but also for its fine cover art, showcasing works done by a veritable “who’s who” of “paleoartists,” So I knew the cover art for my book needed to both conform to this legacy of artistic excellence, but also stand out from other books in the series because of its unique themes. After all, this would be first book in Life of the Past focusing specifically on ichnology. Moreover, the book is more concerned on modern tracemakers and their environments, rather than plants and animals of pre-human worlds. This was done with the intention of demonstrating how our knowledge of modern traces helps us to better understand life from the geologic past, an intrinsic principle of geology called uniformitarianism.

Ideally, as an ichnological purist, I would have had a cover devoid of any animals, and just shown environments of the Georgia of the Georgia coast with their traces. Indeed, I did just that in some of my illustrations in the book, in which I purposefully omitted animals and left only their traces. This “ichno-centric” mindset actually serves a pedagogical purpose, in that it would echo the truism that many sedimentary rocks are devoid of body fossils, yet are teeming with trace fossils.

Figure 1.3 from Life Traces of the Georgia Coast, conveying a sense of the variety and abundance of traces on a typical Georgia barrier island, from maritime forest (left) to shallow intertidal (right). I purposefully drew this illustration using a more cartoonish technique to introduce broad search images of traces for people who may not ordinarily think about these. But also notice what’s missing from the figure: the animal tracemakers. Instead, only immobile plants are depicted. Would this make for good cover art? No and no, especially if you’ve seen the typical covers done for Indiana University Press books. Illustration by Anthony Martin.

Realistically, though, I also knew that modern traces, particularly those made in places as easy to visit as parts of the Georgia coast, would be more eye-catching if accompanied by some of their charismatic tracemakers in a beautiful, natural setting. After all, the Georgia coast has lengthy sandy beaches, dunes, maritime forests, and salt marshes, inhabited by a wide variety of animals, such as sea turtles, shorebirds, alligators, horseshoe crabs, ghost crabs, and many others.

I also knew that a paleoartist would not be as well suited to the task of creating a cover as someone who works more with modern environments. A better pick would be someone who was familiar with the landscapes, plants, and animals of the Georgia barrier islands, but also a fine artist. I briefly toyed with the idea of doing it myself, but already felt like far too much of the book had been “DIY,” and was not confident enough in my skills to put together a compelling cover in enough time before the book came together. An artfully done photograph was another possibility, so I sent several prospective examples to the editors for their appraisal, but these were all shot down for not having enough aesthetic elements for an attention-getting cover (i.e., traces + landscapes + sky + water = very difficult to get into a single photo).

Fortunately, through social connections that still happen despite the Internet and its incentives for becoming increasingly introverted, I met Alan Campbell through mutual friends in December 2008 at a dinner party on the Georgia coast. Fortuitously enough, our meeting was also just before Ruth and I did three weeks of field work on the barrier islands for the book. It was only fitting, then, that our first meeting was spent dining with both of us facing a Georgia salt marsh, filled with fiddler crab burrows and other such traces. Alan is a Georgia artist with much life experience along its coast, he has often portrayed its environments through gorgeous watercolors, and he has worked with scientists in the field.

Consequently, I kept Alan in mind as a potential cover artist for the next few years, and after I had finished the text and all figures for the book, I contacted him last year about my idea, while simultaneously suggesting him to the editors at IU Press. After much back-and-forth negotiations, with me in the middle, both parties finally came to an agreement, and Alan had a contract to do the artwork for the cover by December 2011.

To help Alan in researching his task, I sent him all of my illustrations and photos used in the book so that he would have an extensive library of trace images on hand for reference. He also had this blog as a source, in which I regularly write about Georgia-coast traces, explanations that are always accompanied by photographs and an occasional illustration. We also exchanged many e-mails and talked on the phone whenever needed. I told Alan my preferred cover would feature a coastal scene, but one filled with traces. He voiced a concern that the painting might become too “busy,” and the details might be lost in reduction of the image to the size

Alan’s contract specified that he would have preliminary study sketches would be done by February 1, and the final cover art was to be finished by March 30. He was only a little late with the study sketches (delayed by a minor operation), and I was delighted to see the following sketch in mid-February.

Study sketch by Alan Campbell for the cover of Life Traces of the Georgia Coast. Reprinted with his permission, and anyone else who want to use it, you have to ask him, too. By the way, every time you use original artwork without permission, a little kitten dies.

After a little bit of feedback from both me and graphic designers at IU Press, Alan went back to the drawing board (so to speak), and came up with the following watercolor painting.

Life Traces of the Georgia Coast, 2012, watercolor on paper, 14” X 18” by Alan Campbell. Again, if you want to use it, you have to ask him first and get permission. Remember those kittens? They’re alive now, but there’s no guarantee they’re going to stay that way.

I gave this artwork a big thumbs up, as did the people at IU Press. So once approved and the scan was sent to IU Press, it was up to the graphic designers there to pick out the typeface, color of the type for the main title, subtitle, author name, and placement of type without covering up the main composition of the painting. I had no say in this, and that’s a good thing, because they really knew what they were doing. It is a very nicely designed cover, and the only thing that would please me more is if they had produced a holographic image of it. (Maybe next year.)

The final cover art for Life Traces of the Georgia Coast revisited. Does it look a little different, now that you know more about how it came about?

I won’t spoil the fun for potential readers, scientists, and art appreciators by explaining in detail all of the ichnological, ecological, and geological elements incorporated into the cover. After all, I’d like to sell a few copies of the book, while also letting readers make their own personal discoveries. But hopefully all of you now have a better appreciation for how traces made by animals, our recognition and admiration for these, and artistic expression of them can all combine to contribute to a book that can be accurately judged by its cover.

Further Reading

Leigh, J., Kilgo, J., and Campbell, A. 2004. Ossabaw: Evocations of an Island. University of Georgia Press, Athens, Georgia.

Martin, A.J., in press. Life Traces of the Georgia Coast: Revealing the Unseen Lives of Plants and Animals. Indiana University Press, Bloomington, Indiana.

Morwood, M.J. 2002. Visions from the Past: The Archaeology of Australian Aboriginal Art. Allen & Unwin, Sydney, Australia.

Seilacher, A. 2008. Fossil Art: An Exhibition of the Geologisches Institut. Tubingen University, Tubingen, Germany.

Tomaselli, K.G. 2001. Rock art, the art of tracking, and cybertracking: Demystifying the “Bushmen” in the information age. Visual Anthropology, 14: 77-82.

 

The Ichnology of Peeps

Once a year, around Easter time, an attentive beachcomber might notice the unusual traces of a migratory animal on the sands of the Georgia barrier islands. Based on a few clues, its traces point toward five identically sized and conjoined tracemakers, indicating some sort of obligatory group behavior.

Eyewitnesses swear these tracemakers – nicknamed “peeps” – possess a few superficial avian qualities, yet they lack many of the anatomical traits we normally associate with birds, such as, well, wings and legs. Indeed, they apparently have flat ventral surfaces, which with their forward movement along beach sands cause trails, rather than trackways.

Peep trail, observed on berm of Nannygoat Beach, Sapelo Island, Georgia. Oddly enough, this trail shows both a sudden start and end, almost as if the peeps were placed and removed from the surface, respectively.

As a result, peep trails – which are sometimes sinuous, but always harmonious – consist of five parallel grooves, each spaced equally and separated by six ridges, four on the interior of the trail and one on each side. Lateral movements along the length of a peep trail can vary the height of these ridges, depending on whether the peeps are banking to the right or left as they turn.

Although flying ability in peeps has only been inferred on the basis of their possible avian affinity, peep traces show only very brief periods of airborne activity. These traces indicate a somewhat clumsy strategy when approaching ground surfaces, culminating in abrupt vertical descents best described to laypeople as “crashing.” Ideally, all five peeps leave impressions of their cranial anatomy, which includes rudimentary beaks and foreshortened premaxillas. I have no idea if this facial configuration reflects acquired characteristics – caused by frequent crashes – or are more attributable to their original genotype.

Peep landing trace, in which impressions of the anterior anatomy are preserved. Note the short beak marks and rounded dorsal portion of the torso, but with a thin shelf close to the ventral surface. Sand ridges around the impressions suggest the tracemaker bounced after landing.

Peep resting traces are sometimes subtle, owing to their light weight, which according to some sources is about 85 grams (3.0 ounces) in total, or 17 grams per peep. In such instances where their resting traces are recognized, though, peep ventral anatomy is more clearly discernible. Interestingly, the anterior portion of their bodies is rounded and broad, but tapers into a blunt, narrow posterior with a possible upturned tail, the latter suggested by a thin groove bisecting the dorsal part of this posterior mark.

But perhaps the puzzling aspect of these traces is their lack of feather impressions. This evidence shows that peeps, despite their inferred avian affinity, must have become secondarily featherless, despite a long history of descent from non-avian dinosaurs.

Peep resting trace, barely noticeable owing to the light weight of its tracemakers, yet still apparent through its typical overall five-part form.

As is typical with resting traces, these are often connected directly to traces of other behaviors, such as locomotion or burrowing. Indeed, peep resting traces sometimes segue into or out of shallow burrows, which again have five impressions on their bases. Burrowing is presumably an adaptive strategy to avoid predation, implying delectable qualities.

A peep resting trace that is also a burrow, and connecting to an exit mark (right) in which the peep tails left impressions with movement up and out of the excavation.

Peeps are rarely sighted outside of small, cellophane-wrapped boxes in urban shopping centers. Nevertheless, one spring I was lucky enough to see a gaggle of them (five, of course), exuberantly unbound. on a beach of Sapelo Island, Georgia. Thus I was able to observe them making trails, landing traces, resting traces, and actively burrow just above the intertidal zone, which may very well be their natural habitat.

Five peeps making a trail as conjoined unit on a Sapelo Island beach, a behavior predicted by their traces. Who says ichnology isn’t a real science?

Peep landing marks from a short aerial excursion, with the peep presence a short distance away also supporting the interpretation of their bouncing forward after landing.

Peeps exiting a shallow burrow that was also a resting trace, a blend of behaviors often implied by traces.

Peeps initiating a deeper burrowing strategy, perhaps as a form of predation avoidance. Note how the trail becomes shortened, straight, and produces a large pile of sand in front of the direction of movement.

Never-before-seen evidence of how these legless peeps burrow! They use a combination of minute lateral undulations and forward movement directed downward at a shallow angle. As a result, the trail entering the burrow becomes covered by sand ridges produced by the subsequent behavior.

Success! These peeps have managed to bury themselves, leaving only a small portion of their heads exposed, with all five watching warily for predators,

Peeps have been the subject of intensive research, but much of this work, however valuable, has been laboratory based and highly experimental. Thus the data I’ve presented here on their traces should greatly expand our understanding of their behavior in the context of natural settings. Further insights on the biology of peeps are currently murky, but their traces hold promise of fitting them into a taxonomic category more precise than “looks like little chicks.”

Although trace fossils of peep trails, landing traces, resting traces, and burrows have not yet been discovered, I propose these should have the following ichnogenus and ichnospecies names: Peepichnus quinquecalles (= “Peep trace of five trails”). However, I anticipate some of my ichnological colleagues will want to split the ichnotaxonomy of peep traces on the basis of whether they were moving horizontally versus vertically (the peeps, not my colleagues) and other such nuances. Personally, I think they just need to relax, stop coming up with so many silly, unpronounceable names, and just enjoy the sweetness of these little tracemakers of the Georgia coast.