Victorian Dinosaur Tracks of the ’80s

The first time Tom Rich and Patricia (Pat) Vickers-Rich visited Knowledge Creek was also their last. Their sojourn that day – December 18, 1980 – had been motivated by a renewed sense of exploration and scientific discovery on the coast of Victoria, Australia. But they also had no idea that a little footprint left by a dinosaur 105 million years before them there would soon become a part of their paleontological legacy.

Ornithopod-Dinosaur-Tracks-VictoriaTwo of the first known dinosaur tracks, found in Victoria, Australia in the 1980s, but described for the first time this year. (Scale in centimeters; photo by Anthony Martin.)

Just two years before Tom and Pat’s trip to Knowledge Creek, a couple of students of theirs at the time, John Long and Tim Flannery, along with geologist Rob Glennie, discovered bits and pieces of dinosaur bones in rocks from the Early Cretaceous (120-105 million years ago) of coastal Victoria, Australia. Because these were the first dinosaur remains found in that region of Australia since 1903, the husband-wife paleontologist team decided they might prospect for more bones in other places with Early Cretaceous rocks. This was a daunting task, considering the lengthy and imposing coastal outcrops both west and east of the big city of Melbourne, Victoria, but they were up for the challenge.

Tom-Rich-Patricia-Vickers-RichA rare portrait of these two Australian paleontologists – Tom Rich and Pat Vickers-Rich – in which they are not a blur of discovering, publishing, and educating. (Photo by Anthony Martin, taken in 2010.)

Knowledge Creek was one of many spots on their map of coastal outcrops that had not been properly vetted for their fossils. It was named after a modest drainage that cut across the Cretaceous rocks in the Otway Ranges and located about 2.5 hours drive west of where Tom and Pat lived in Melbourne. So off they went to assess it, a decision they soon regretted.

Wallaby-Trail-Knowledge-CreekNeed to find the way to the outcrop at Knowledge Creek? Just take a wallaby trail partway down, look for the somewhat-human trail, take a right, then a left, and keep going downhill until you find the creek with the leeches. How do you get back up? No bloody idea, mate. (Photo by Anthony Martin.)

The terrain is what prompted them to soon question their sanity. To access the outcrops then (and still) required driving along an unmarked dirt road high above the cliffs, finding a wallaby trail or other such clearing through the coastal scrub forest, bushwhacking your way down a steep, muddy slope, crossing leech-infested Knowledge Creek, and then – once on the rocky marine platform, eyes down looking for fossils – not slipping on the algae-covered rocks and getting pummeled by waves. While there, they also tried not to think about the trip back up. One challenge at a time.

Here they found Victoria’s first known dinosaur track, and the first discovered in all of southern Australia. The track was exposed on the marine platform about 200 meters (660 feet) east of where Knowledge Creek flowed out and onto the rocks. It stood out clearly as a single, raised, dark-brown three-toed entity on a flat sandstone surface, with no matching companion tracks nearby.

Knowledge-Creek-Discovery-SiteDiscovery site of the first known dinosaur track in Victoria, Australia, found by Tom Rich and Pat Vickers-Rich on December 18, 1980. The spot where they saw the track on the marine platform would have been about 100 meters to the left, where the big wave in this photo is about to smash. (Photo by Anthony Martin.)

Luckily, Tom and Pat had brought hammers and chisels with them. so where a dinosaur foot once pressed into soft sand, they added their own traces to its hardened periphery. Into a backpack the little slab went and they carried it out, their feet leaving longer and deeper prints than before as they slogged back up the slope.

Knowledge-Creek-TrackThe first known dinosaur track from Victoria, Australia. It’s only about 10 cm (4 in) wide and long, and it’s all by its lonesome self, but it’s a pretty track. Also, check out those chisel traces around it, made by Tom and/or Pat Vickers-Rich. (Photo by Anthony Martin.)

They took the track to Museum Victoria, where it was assigned a specimen number and label, then put in a drawer in the paleontological collections in the basement of the old Exhibition Hall for the museum. As Victoria’s only known dinosaur track – and such a neatly defined one – it became iconic through the rest of the 1980s and afterwards. Because its shape so clearly said “dinosaur track!”, it was frequently displayed in the museum, and photos of it showed up in books and articles on the paleontology of the area. As a sign of Pat’s passion for science education and outreach, she had reproductions made of it and gave these away to local schools so Australian students could learn about Victoria’s only dinosaur track by proxy.

Museum-Victoria-Exhibit-HallThe old Exhibition Hall of Museum Victoria in downtown Melbourne, Australia, which houses the extensive fossil collections for the museum, including its dinosaur tracks. (Photo by Anthony Martin.)

Oddly, more than thirty years passed, and this dinosaur footprint was neither described nor diagnosed. Despite its importance, it was overshadowed by far more abundant and seemingly more exciting dinosaur bones in outcrops near Knowledge Creek. This place and its fossils were discovered by Tim Flannery, Michael Archer, and Tom Rich on December 13, 1980, and only five days before Tom and Pat descended into Knowledge Creek. Tom called it Dinosaur Cove, and thanks to its fossils and total coolness as a place name, it stuck. Here’s what he said about its origin story:

That night, needing a name for this then unnamed cove, I scribbled in my notes ‘Dinosaur Cove,’ not thinking then that it would ever have any particular significance.

Dinosaur-Cove-VictoriaDinosaur Cove, one of the most important fossil sites in Australia and for polar dinosaurs in the Southern Hemisphere. (Photo by Anthony Martin.)

Tom-Rich-Dinosaur-CoveTom Rich next to the sealed tunnel at Dinosaur Cove, where he, Pat Vickers-Rich, and many volunteers extracted many fossils during the 1980s and early 1990s. (Photo by Anthony Martin.)

Here was where this part of Australia became justifiably famous for its dinosaur fossils in the 1980s and 1990s, as Tom and Pat, along with dedicated field crews, extracted hundreds of skeletal bits and pieces of dinosaurs and many other animals that lived there. What made these remains even more important, though, was how their former owners lived near the Cretaceous South Pole, when Australia was still connected to Antarctica. This meant Tom, Pat, and their colleagues were documenting what was then one of the few known polar-dinosaur assemblages in the world. For about ten years, they and their teams also performed some of the hardest labor any dinosaur-recovery effort should ever have to endure, described in their book Dinosaurs of Darkness (2000).

Dinosaurs-of-Darkness-CoverThe cover of Dinosaurs of Darkness (2000), coauthored by Tom Rich and Pat Vickers-Rich, with cover art by famed paleoartist Peter Trusler.

Nearly nine years went by after the discovery of the track at Knowledge Creek, as it remained the only one in Victoria. That changed in early 1989, when geologist Helmut Tracksdorf found two more. While out for a walk along the genteel seashore near the small coastal community of Skenes Creek (Victoria), he spotted the tracks on a marine platform only 50 meters (~160 feet) south of The Great Ocean Road. Although these footprints were about 35 kilometers (18+ miles) east of Knowledge Creek, they were also in Early Cretaceous rocks, from a little more than 100 million years old. One of the tracks had three clearly defined toes, whereas the other was not so obviously a track. (Spoiler alert: But it was.)

Helmut next did the right thing, and reported the tracks and their location to Tom Rich at Museum Victoria. On March 18, 1989, a field crew from the museum stopped by the marine platform, found the tracks, used a portable rock saw to cut each out into manageable sizes, and loaded the two slabs into a vehicle for the drive back to Melbourne. Again, these two tracks received a Museum Victoria specimen number and were placed in a drawer, sharing the same Exhibition Hall basement with the Knowledge Creek track. And there they stayed, also unstudied until just recently.

Skenes-Creek-Track-CompleteThe better-defined of the two Skenes Creek dinosaur tracks discovered by Helmut Tracksdorf in 1989. The scale bar is 5 cm (2.5 in), so this track is also about 10 cm (4 in) wide, has three toes, and raised, just like the Knowledge Creek track. You can also tell it was on a marine platform because of the little crustacean (barnacle) on its lower right edge. (Photo by Anthony Martin.)

Skenes-Creek-Track-IncompleteThe not-so-well-defined of the two Skenes Creek dinosaur tracks discovered by Helmut Tracksdorf in 1989. Yeah, I know, it’s blobby and you have to squint and maybe have a few beers before it starts looking like a three-toed dinosaur track, but it’s a track. Just like bones, tracks aren’t always perfectly preserved, either. (Scale in centimeters; photo by Anthony Martin.)

Oddly, Helmut did not receive any confirmation that the tracks had been collected. He only learned of their acquisition indirectly later in 1989 when he saw rectangular holes in the marine platform marking where the tracks used to reside. Also, whoever wrote the specimen label in 1989 did not record that he was the person who discovered the tracks. Years later, I asked Tom, Pat, and others at the museum then, and no one could recall who found it. Only in October 2013 did I and everyone else finally find out it was Helmut, who wrote to me to confess his role after reading a blog post of mine. For that, I thank him most sincerely for his long-time non-credited contribution to the dinosaur ichnology of Victoria.

????????????????????????????????????????????????????????????

Helmut Tracksdorf, who in 1989 discovered Victoria’s second and third dinosaur tracks, as well as Victoria’s first dinosaur trackway. Here he is more recently taking a rest from bushwalking by sitting on Cretaceous rocks of the Victoria coast. Also, he either lost his boots or was busy making his own distinctive tracks for future generations to discover. (Photo courtesy of Helmut Tracksdorf.)

In February 2006, about 17 years after Helmut’s find, I was in Australia on a rare sabbatical from my university (very rare, too rare, as in, the only one ever). I was there primarily to work on a science-education project with Pat, who I had long admired as both a scientist and science educator. Yet within my first week there, Tom Rich invited me to go with him to the Dinosaur Dreaming dig site near Inverloch, Victoria. Tom, Pat, and the other dinosaur hunters of Museum Victoria and Monash University had abandoned Dinosaur Cove since the early 1990s, and Dinosaur Dreaming was their “new” polar-dinosaur dig site. Again, it was relatively close to Melbourne (only a little more than a two-hours drive away), and although it had its own set of logistical challenges, it was was much easier to access than Dinosaur Cove.

On the morning of February 26, 2006, Tom drove just him and me from Melbourne to the Dinosaur Dreaming site, and I was soon walking on the Cretaceous rocks of Victoria for the first time. That same day, I found two large theropod dinosaur tracks, the first ever found in Victoria, but which Tom instantly rejected as real when I showed them to him. Later that day, he drove off with my field boots on the top of his Land Rover. But both of those are stories that can be told another time.

Dinosaur-DreamingMy first view of the Dinosaur Dreaming site (near Inverloch, Victoria) on February 24, 2006. The photo was taken from a car park just above, with wooden steps leading below, lending to a bit more civilized journey for volunteers compared to Knowledge Creek or Dinosaur Cove. (Photo by Anthony Martin.)

Since that day in 2006, I’ve worked with Pat, Tom, and others there on-and-off for the past ten years, during which I have found and/or documented a few other trace fossils in that part of the world. Some of these turned out to be paleontologically significant (such as this one, this one, this one, and oh yeah, this one), and more are on the way. It’s been a really good journey for all of us, and my working with Pat and Tom changed my life and career for the better. I am extremely and unreservedly grateful to them for their mentorship and friendship.

Yet probably the most important gesture of support for my ichnological work in Victoria came from Tom in 2010. He decided to apply unused Museum Victoria research funds to fly me round-trip from Atlanta, Georgia to Melbourne, Victoria, and paid for a month of our doing field work together along the Victoria coast. It was an unforgettable experience in many ways, which I partially documented in my first blog (The Great Cretaceous Walk, dormant since 2011). We walked together for probably a few hundred kilometers on the rugged Victoria coast, him looking for bones, and me looking for dinosaur tracks, insect and crustacean burrows, and other trace fossils. You could say it was a bit of an adventure.

AJM-EaglesNestYours Truly in May 2010 with Cretaceous sandstones to the left and the ocean to the right, near the start of what I called “The Great Cretaceous Walk.” (Photograph by Tom Rich.)

Three weeks into that excursion along the Victoria coast with Tom, I’m happy to say I finally helped end the drought of dinosaur-track discoveries in Victoria, which had seemingly been in limbo since the 1980s. While walking along Milanesia Beach, west of Knowledge Creek and Dinosaur Cove, I spotted a motherlode of small dinosaur tracks on a rock slab there. Tom and Greg Denney – a long-time friend of Tom’s from Dinosaur Cove – were with me at the time, and Greg soon found another slab with more dinosaur tracks next to mine. The detailed story of this day and the discovery of these tracks is in a chapter titled The Great Cretaceous Walk in my book Dinosaurs Without Bones (2014).

Although the two slabs together only held twenty tracks, it still constitutes the best assemblage of polar-dinosaur tracks in the Southern Hemisphere. Would someone have eventually found these or other dinosaur tracks at Milanesia Beach? Probably. But thanks to Tom’s support and Greg’s help, we found them a lot sooner.

Most of the video footage shown here, along with thousands of photographs (and many more footsteps) were taken at Milanesia Beach by my wife Ruth Schowalter. We shared many adventures on the Victoria coast and elsewhere in Australia.

Thus in 2013, when paleontologist Erich Fitzgerald of Museum Victoria sent out a request for former and current colleagues of Tom Rich to contribute research papers for a special volume in his honor, I readily accepted. But what topic could I address that would be scientifically meaningful, while also linking it to Tom and Pat? That’s when I decided to dust off my detailed notes, measurements, and photos taken of Victoria’s first dinosaur tracks during previous visits to the museum. There were just three footprints to study: the one Tom and Pat found in 1980, and the two Helmut found in 1989.

Ornithopod-Dinosaur-Tracks-VictoriaThe two best-preserved of the Victoria dinosaur tracks of the 1980s. The one on the left is from the marine platform near Skene’s Creek and the one on the right is from Knowledge Creek. Even though they look almost identical, they were separated by more than 30 km (18 miles). (Photo by Anthony Martin.)

With only three tracks to examine, this was a manageable study, and I did it in an old-fashioned way, using a ruler, calipers, pencils, notebook, my eyes, and occasionally my brain as the main instruments for scrutinizing the tracks. No lasers, CT scanners, 3-D printing, virtual reality, aerial drones, avatars, self-aware AI devices, or other forms of technology were necessary for doing this science. All I needed was for one of the collections managers – David Pickering – to retrieve the tracks from Museum Victoria collections for me, a table to support them, and I was in business.

Because drawing is one of the best ways for me to observe, I started with making scaled sketches of the tracks, which helped me to pick up details missed in times before when just glancing at the tracks. This is an example of practicing what I preach, as I often require my students to make labeled drawings as part of their scientific process.

Scan910Scaled drawings (“maps”) of the two tracks, drawn on May 25, 2010, which helped me to compare their relative dimensions and forms. These and other sketches, descriptions, and measurements are in a field notebook, which I prefer using even when in a museum.

I also measured the tracks so that they were thoroughly quantified. Ideally, this meant I would have recorded track width, track length, widths and lengths of individual toes, and angles between the toes. However, two of the three tracks (from Skenes Creek) were not preserved well enough to measure everything I wanted, although one of those was good enough I could compare its measurements to those of the Knowledge Creek track. These numbers, when combined with my qualitative descriptions, later helped me to identify “who” (which dinosaurs) made the tracks.

Dinosaur-Track-MeasurementsDiagram showing what was measured in the Victoria dinosaur tracks: TW = total width, TL = total length, L1-3 = digit lengths, W1-3 = digit widths, and IA1-2 = interdigital angles. Figure from Martin (2016).

Based on my perusal, these three-toed tracks were made by small ornithopod dinosaurs, often informally called “hypsilophodontids.” Although such dinosaurs do not belong an evolutionarily united group (clade), dinosaur paleontologists still use this term informally when talking about small ornithopods that lived during the Late Jurassic through the Cretaceous Period in different parts of the world. Among the Victorian dinosaurs found and documented by Tom, Pat, and others, hypsilophontids are the most common dinosaurs, abundantly represented by bones and teeth.

What’s significant about my interpretation is that these are the first known small ornithopod tracks from Victoria, and by default, all of southern Australia. (All other dinosaur tracks found in Victoria since the 1980s are from theropods, both bird and non-bird.) This is important because it officially connects the body-fossil record of small ornithopods with their probable trace fossils for the first time. Another meaningful facet of this connection is how the tracks scientifically affirm details of Peter Trusler’s remarkable 1992 painting, Early Cretaceous in Southeastern Australia – Spring Scene. In this artwork, he used the Knowledge Creek track as a template for depicting tracks made by small hysilophodontids on a sandy riverbank following spring thaws (and flooding) of that formerly polar region. So I was most pleased to have my science finally connect with his predictive (and gorgeous) artwork.

Hysilophodontids-Tracks-TruslerPeter Trusler’s extraordinary painting Early Cretaceous in Southeastern Australia – Spring Scene (1992), visualizing then-fresh three-toed tracks left by hysilophontid dinosaurs on a sandy riverbank after spring-thaw floodwaters had waned. Let me emphasize that this is a painting and he made it in 1992, meaning there is nothing digital about it. When I show it projected on a screen in my talks, people gasp because they at first think it is a photograph, but also because of its beautiful, evocative composition. No wonder I wanted it to be on the cover of my book Dinosaurs Without Bones.

One remarkable point about the two well-preserved tracks from Knowledge Creek and Skenes Creek, though, is their strikingly similar size and form. Despite being separated by more than 30 kilometers (18 miles) they could have been made by not just the same species of dinosaur, but the same dinosaur. They were even preserved the same, protruding from the top of the bed, instead of as depressions or natural casts on the bottom of a bed. This odd preservation likely was caused by the tracks filling with a different sediment holding the track, which then cemented more firmly, leaving the track behind when modern-day ocean waves eroded the top surface.

Yet another insight that came out of the study, and a totally unexpected one, resulted from correspondences with Helmut and ace Victoria-fossil-finder Mike Cleeland. After exchanging a few messages with one another, Mike decided that he and his wife Pip would try to re-locate the original discovery site for the tracks by looking for the 1989 saw marks in the rocky marine platform. And re-locate them they did. Even better, the rock-saw traces lined up, indicating that the two tracks were aligned, and likely from a trackway made by the same individual dinosaur. This means Helmut found Victoria’s first dinosaur trackway – consisting of two or more tracks made by the same dinosaur – in 1989. This was 21 years before I found what I thought was the “first” dinosaur trackway at Milanesia Beach, so I need to stop bragging about that. In my face!

Pip-Cleeland-Dinosaur-TracksThe site of the first known dinosaur trackway discovered in Victoria (Australia), originally found in 1989 and marked today by rock-saw marks. (Pip Cleeland for scale; photo by Mike Cleeland.)

Saw-Marks-Skenes-Creek-Dinosaur-TracksThe sequential steps of a small ornithopod dinosaur represented by rock-saw cuts. (Photo by Mike Cleeland.)

Given such intriguing results, it was time to write the article and have it reviewed. However, it took a while. I wrote the main text of the article in a few months, then picked out and labeled photos of the tracks, made a few illustrations, put them all together into one coherent manuscript, and submitted the article for peer review in June 2014. A few months later I received the reviews, which were mostly positive and helpful. (Thanks, reviewers!) I changed the article accordingly, then resubmitted it a few months later. However, I didn’t see page proofs of the corrected article until July of 2015, and the final galley proofs until just a few months ago. So you could say I was most pleased when it was published last month, although probably not as much as the editor of the volume.

Because the article was one of many in a special volume honoring Tom, all authors were told to keep quiet about it so that it would be a big surprise for Tom and Pat once published. Somehow we did it, and on July 19, 2016, Tom received his bound copy of the volume and at Museum Victoria, flanked by former students Tim Flannery and Erich Fitzgerald. It must have been quite a special moment, and I smiled when I saw the following photo posted on Twitter the next day.

Flannery-Rich-FitzgeraldThe Tom Rich special volume was complete once the secret was unveiled, which happened on July 19, 2016 at Museum Victoria. Here Tom is accompanied by his former students Tim Flannery (left) and Erich Fitzgerald, the latter of whom did a ripper of a job on editing the volume. (Photo by Alastair Evans.)

Other than everything else I said before, are there two takeaway messages from this study? Yes. One is that amateur contributions have been and always will be important for paleontology. Helmut Trackdorf’s discovery of the first dinosaur trackway in Victoria in 1989 and his contacting me about it in 2013 may seem small when compared to other discoveries in that area of the world. Yet it is a puzzle piece that now fits better in our picture of Cretaceous life in that area of the world: every little bit helps. Also, now that we’ve relocated the original discovery spot, we might find more dinosaur tracks near there. We’ll see.

The second message is that well-curated museum collections are damned important for doing a lot of good science in paleontology. For instance, I have been to Knowledge Creek three times, and on all three of those visits I looked for the chiseled hole in the marine platform where Tom Rich and Pat Vickers-Rich found that first dinosaur track in 1980. Alas, I did not find it. So if they had not collected the track and put it in Museum Victoria, it may never have been found and studied by me or anyone else. The same goes for the Skenes Creek tracks found my Helmut Tracksdorf in 1989: If these hadn’t gone to the museum, no study of those, either.

Those tracks belonged in a museum, and so did I. But if the museum wasn’t there to act as a repository for the specimens, or it didn’t have collections to study, then I wouldn’t have been there either. What’s the moral of the story? Support museums.

In summary, this is a little article about a few fossil tracks made by two small dinosaurs a long time ago in a cold place very far away from when and where I am right now in Atlanta, Georgia. Yet I am very proud of it as a way for me to give something back to my mentors and other discovers out there, as well as all of the good people in Victoria who helped make it happen. Good on ya, mates!

*****************************************************************************

The citation for the original research article is:

Martin, A.J. 2016 A close look at Victoria’s first dinosaur tracks. Memoirs of Museum Victoria, 74: 63-71.

The article is also open access and free to download at the following link:

A Close Look at Victoria’s First Dinosaur Tracks

Blog Posts Reporting on the Article:

Dinosaur Tracks Lead Paleontologist through Museum to Mentor’s Discovery: Carol Clark, eScienceCommons (Emory University), July 29, 2016.

Tracking Australia’s Dinosaur Past: Jon Tennant, PLoS One Paleo Community, August 8, 2016.

*****************************************************************************

Afterthought: The main reason why I published this article with Memoirs of Museum Victoria rather than another journal was to honor Tom Rich. But what sealed the deal for me was learning that the article would also be freely available to the people of Victoria – or anyone else, for that matter – with an Internet connection. Some things in life are more important than journal impact factors. So there.

 

The Ichnology of Pacific Rim

Last week I surrendered to geekdom peer pressure and went to see the new summer blockbuster Pacific Rim. Living up to my namesake, St. Anthony, I normally don't have a problem resisting such temptations, and just wait to see a movie like this in some other format: DVD, Netflix, or the way movies were originally intended to be seen, on a tiny screen on the back of an airplane seat. But what really pushed me to go was the following image, only glimpsed for a few seconds in one of the trailers:

Kaiju-Track-IntertidalOoo, look, a trace made in an intertidal sandflat! Perhaps it's from a ghost crab, moon snail, or shorebird. Hey, wait a minute, something doesn't quite look right. Are those people next to it? (Image from http://www.comicbook.com.)

Yes, that’s right: it's a gigantic footprint, and in what looks like an intertidal coastal environment, between the low tide mark and coastal dunes. That was all the incentive I needed, as I further wondered what other ichnological wonders would be included in the film. I was also encouraged to see where other scientifically inclined bloggers had fun with Pacific Rim by taking a look at its biology (here, here, and most recently, here) and physics (here here, and most recently, here). So given a $5 afternoon matinee and a spouse (Ruth) willing to indulge my sci-fi inner nerd (OK, so it’s not so “inner”), I had every reason to document the various traces and tracemaking activities in the film. You know, for science and science education.

The verdict? Well, I have to admit some mild disappointment with how the director – Guillermo del Toro - chose to focus on the conflicts between massive amphibious creatures (kaiju) constructed by interdimensional aliens and human-guided fighting machines (jaegers), rather than on their traces. Nonetheless, I managed to find some ichnological gems scattered throughout. For example, the footprint shown in the trailer did indeed look glorious on a big screen, and the human figures associated with it reminded me of Jason Isley’s whimsical underwater photos. But let’s take a closer look at what this footprint tells us about its maker.

Although viewed from an oblique angle, the track seems longer than wide, and has four clearly defined digits, although a probable fifth digit is visible on the side farthest from the viewer. All of the digits are forward-pointing and taper abruptly at their ends. The tracks also has an indentation on the “heel” (proximal) part of the foot, and is more-or less-bilaterally symmetrical. Pits inside of the track may represent additional anatomical traits, such as scales or other bumps on its skin, or could be sediment that underwent liquefaction or other soft-sediment deformation.

Kaiju-TrackInterpreted kaiju track, extrapolated from oblique view. Scale = 10 m (33 ft).

Using the people around the tracks as informal units of measurement, and assuming from the hiragana-katakana in the newscast image that this track - like many items - was made in Japan, we can estimate the dimensions of the track. Average heights for Japanese males and females are 1.71 m and 1.58 m, respectively, and the average of those is 1.64 m. Using one figure (boxed) as a unit that equals 1.64 m (5.4 ft), the footprint had about 18.4 Japanese-Person-Units (JPU) length and 10.1 JPU width, which converts to about 30 m (98 ft) long and 17 m (56 ft) wide. This results in a length:width ratio of about 1.8.

Kaiju-Track-MeasuredLength and width measurements for kaiju track, including figure used as 1.0 JPU = 1.64 m. Width measurement is assumed on basis of probable fifth digit impression on side of track furthest from the viewer.

Unlike in most articles published in high-impact journals, I'll actually admit potential sources of error in these measurements before I'm forced to retract this blog post under a cloud of scandal, followed by my accepting a high-paying position on Wall Street, where such inaccuracies are rewarded without penalty. For example, the width measurement, because it is being taken from an oblique angle (not so accurate) instead of from directly above (much more accurate) probably underestimates the actual width. So the actual width is probably closer to 20 m (67 ft), which reduces the length:width ratio to about 1.5. The length measurement would also benefit from more of an overhead view, and probably would best be studied using aerial high-resolution LiDAR scanning. So there.

To put this in ichnological perspective, when these dimensions are compared to typical sauropod dinosaur tracks from the Early Cretaceous of Texas - where everything is supposed to be bigger - the sauropod comes out looking pretty puny indeed. In this example, the rear track length is 87 cm (34 in) and width is 59 cm (23"), and although its length:width ratio comes out fairly close to my estimation for the kaiju track (1.47), it is only about 2% of its size. Some "thunder lizard."

Sauropod-Tracks-TexasSauropod tracks from the Early Cretaceous (about 120-million-years-old) Glen Rose Formation of central Texas.The larger track is from the left rear foot, and the smaller one in front of it is the left front foot; this sauropod was walking slowly with an "understep" gait, in which its rear foot stayed behind its front. Please read the preceding text for all of that measurement stuff, which ichnologists sometimes call "data." (Photograph taken by Anthony Martin in Dinosaur Valley State Park, near Glen Rose, Texas.)

Kaiju+Sauropod-Tracks copyTo-scale comparison between sauropod track (arrow, lower left) and kaiju track (right) to same scale. Looks like some cute little saurischian would be feeling a little inadequate. As Cowboy Curtis once said on Pee Wee's Playhouse, "You know what they say: Big feet, big boots!" Scale = 10 m.

Speaking of high impact, how about track depth and other features of this individual track that might tell us about behavior of the kaiju tracemaker? Oddly enough, the kaiju track looks too shallow to me, measuring only about 1.6 JPU, or about 2.5 m (8 ft) deep. It also lacks pressure-release structures, which are sedimentary structures caused by the tracemaker applying and releasing pressure against the wall of the track. Considering that kaiju were supposed to weigh tens of thousands of tons, this track should have a greater depth, along with major ridges and plates outside of the track outline that would have been imparted by any forward or lateral movement of its foot.

Alternatively, this track may represent more of what I would call a “stamp,” which would have been made by placing a foot directly down onto a soft substrate and pulling it straight up, rather than from moving forward or laterally. Based on this evidence, the kaiju might have been attempting to squish pesky humans, rather thank performing its normal, forward-walking, city-destroying gait. Unfortunately, the preceding and next track are not shown in the photo, which would help to test this hypothesis.

Other than size, how does the form of this track compare to those of other known dinosaur tracks? The length: width ratio comes out close to that of a sauropod dinosaur, yet other qualitative traits of the track, such as thin digits that taper and end with sharp clawmarks, are more like that of a theropod. But I do want to point out a little coincidence. Have you ever seen the front-foot track of a typical raccoon? Hmmm...

Raccoon+Kaiju-TracksI give you you raccoon tracks, and I give you kaiju track. That is all. (Photo of raccoon tracks taken by Anthony Martin on Cumberland Island, Georgia.)

What’s really fun, though, is if you compare the kaiju track to known theropod tracks. Theropod tracks bearing four or more forward-pointing toes are quite rare, and the few identified probably belong to a group of theropods called therizinosaurs, which - by a strictly enforced paleo-nerd law - cannot be mentioned in a sentence without also using the descriptor "bizarre." Late Cretaceous dinosaur tracks recently reported from Alaska with four long, forward-pointing digits have been attributed to therizinosaurs. Were the creators of the kaiju track trying to compare it to that of a really strange theropod dinosaur? Maybe, maybe not.

Therizinosaur-Tamara-TrackArtistic rendition of Nothronychus mckinleyi, a therizinosaur from the mid-Cretaceous of North America (left) and a four-toed rear-foot track credited to a therizinosaur from Late Cretaceous rocks of Alaska (right). Therizinosaur artwork by paleoartist Nobu Tamara and available in Wikipedia Commons here; photo of track by David Tomeo and reproduced from Everything Dinosaur.

Although the Pacific Rim kaiju designers used a mix of invertebrate and vertebrate elements for anatomical details appearances of their monsters (detailed splendidly by Darren Naish here), I do wonder how they came up with the track, and which real-life animals - modern or extinct - were supposed to be evoked by this track's brief appearance onscreen. Hopefully the DVD and its Special Features will reveal all once that comes out.

(Incidentally, this attempt to divine the evolutionary relatedness of a science-fictional animal from a single track reminds me of a scene from the classic science-fiction film Forbidden Planet. At some point, an invisible monster comes aboard a spaceship on the aforementioned planet and kills its chief engineer. The ship scientist, Dr. Ostrow, then gave a fine interpretation of the monster based on a plaster cast made from one of its footprints, including how it traits seemed to go against all known evolutionary principles. It's such a fun scene, I've shown it in some of my classes as an example of "extraterrestrial ichnology.")

Other tracemaking in the movie, of course, included wholesale destruction of major population centers by the kaiju, clawmarks left on various city substrates, as well as kaiju scat. Unlike other fans of the movie, I've only seen it once so far, and cannot recall whether the following picture of its droppings was flashed on the movie screen or not.

What-a-load-of-kaiju-crapThe banner for this news clip says it all: kaiju excrement, and you can bet this much did indeed contaminate a portion of Manila, Philippines (or the "Phillipines," which may be a gated community just outside of Philadelphia.) On the flip side, I'll bet a certain sick Triceratops in the movie Jurassic Park is now a little less self-conscious about having its wastes piled higher and deeper on the big screen.

One line about their excrement – uttered by kaiju-organ harvester, Hannibal Chau (played by a hilarious Ron Perlman) - alludes to its commercial value based on its phosphorus content. This would accord with the economic importance given to bat or bird guano, which has been mined and sold as fertilizer, and even inspired wars. (I am not making that up.) Still, it would have been beyond awesome to have just one scene showing a deposit of its scat enveloping a large, recognizable monument to a politician in one of those cities.

Hannibal Chau (Ron Perlman), selling kaiju products for whatever might ail you. Alas, their scat is not mentioned in this ad, but he could easily do another one directed at Whole Foods. After all, it would be 100% organic and free-range fertilizer!

What about the jaegers? Their traces are much tougher to discuss, semantically speaking. Ichnologists classify tools themselves as traces of behavior, but most do not count marks made by tools (or machines) as traces. Nonetheless, because the jaegers are being controlled by humans, the marks they leave on the landscape, seascapes, and upside some kaiju’s head, might count as traces, too.

However, in one scene of the movie, in which a kaiju picked up a jaeger and threw it – inflicting much destruction of private and public property – these traces would be those of the kaiju, not the jaeger. I pointed out a similar situation with Jurassic Park. Toward the end of the movie, the poor, misunderstood protagonist of the film - the Tyrannosaurus rex - in an action tinged with self-loathing, hurled a Velociraptor at a mounted T. rex skeleton, no doubt expressing doubt about her place in a post-Mesozoic world. Existentialist angst aside, the destruction of the skeleton was a trace of the tyrannosaur's behavior, not that of the Velociraptor.

So next time you go to a movie featuring multi-ton monsters emerging from the deep sea and massive fighting machines, look for them to make traces, note the traces they make, how these traces may reflect some sort of evolutionary history for the tracemakers, and ask yourself what constitutes a trace. Then no matter how bad the movie, you'll still be guaranteed to enjoy it. Happy movie viewing and tracking!

The Ichnology of Jurassic Park

All paleontologists remember their first time. Mine was in 1993, during a hot, steamy summer in Atlanta, Georgia. I had just spent the previous month camping in wilderness areas of Wyoming, so coming back to a big city with all of its urban temptations meant I was weak and susceptible to seeking out unusual sources of pleasure. Although I was not quite ready to be taken for such an exhilarating ride, it was an experience I’d never forget. Afterwards, once I had recovered enough to be able think about it, I wanted to do it again.

I am, of course, talking about seeing the film Jurassic Park on a movie screen. Sure, this movie has been around long enough (20 years) that nearly every paleontologist has also watched it on a TV, computer, or mobile device. But there is something about seeing dinosaurs – which, let’s face it, are most famous for their size – shown big. The initial glimpse of a Brachiosaurus munching on the tops of tall trees, a herd of Paralophosaurus ringing a glistening lake, an ill Triceratops dwarfing its human caretakers, the grand entrance of the Tyrannosaurus: all of these “actors” were meant to be seen large, and fill us with awe. It worked. Plot, acting, and science aside, Jurassic Park was, and probably still is, the best movie made for conveying what it would feel like for us humans, separated by a minimum of 65 million years, to see real, living dinosaurs.

“It’s, it’s a dinosaur.” That pretty much said it all in 1993, and still does. But what traces were being made by this Brachiosaurus as it strolled through its all-you-can-eat salad bar, known to you and me as a “landscape”? Please read on.

In 1993, though, I did not have an appreciation for some of the smaller details included in this film, and how my research specialty of ichnology – the study of traces, like tracks, burrows, and nests – was reflected throughout it. What dinosaur traces were included in the movie, and how were these traces used to serve or advance the plot? I also wondered how 20 years of field experience and scholarly research in ichnology might have changed my perceptions of it since that first viewing.

So with the re-release of Jurassic Park in 3-D last week, I decided it was time to view it from an ichnological perspective and share these thoughts with others. After all, my next book, Dinosaurs Without Bones (Pegasus Press), is about dinosaur trace fossils, and written for a popular audience. Also, in between the movie’s first release and now, I wrote two editions of a college textbook on dinosaurs (Introduction to the Study of Dinosaurs). Thus I went to the theater well justified in watching Jurassic Park once more, to see for myself how dinosaur traces were portrayed in the most well-loved of all dinosaur movies. And oh yes, for the fun.

For the sake of simplicity, I’ve divided these traces into two categories: those viewers could directly observe in the film, and others that could be inferred from the dinosaurs’ behaviors. Wherever possible, I also connect traces shown in the movie to research done on dinosaur trace fossils during the last 20 years, giving a broad sense of how far dinosaur ichnology has progressed since 1993.

(Ichnologist’s note: Even though all of the live dinosaurs in the movie were set in the 1990s, the study of their modern traces still qualifies as neoichnology. In contrast, any reference I make to actual dinosaur trace fossils is paleoichnology. Just so you know.)

Dinosaur Traces in Jurassic Park

Velociraptor hatchling traces. Jurassic Park shows two different but complementary examples of hatchling traces for “Velociraptor.” (I will call this dinosaur Velociraptor throughout this post, but as most dino-philes know, the director, Steven Spielberg, scaled up the Late Cretaceous Velociraptor to maximize its frightfulness. Hence it is actually more like the Early Cretaceous Deinonychus or Utahraptor.)

One is an egg-emergence trace, which is the hole left in an eggshell where a dinosaur broke out of its egg. In this scene, a cooing Velociraptor hatchling pokes its cute little nose out of its egg. (This nose, if everything worked out for it, would some day would be warmed by fresh human viscera.) We first witness this tracemaking in the Jurassic Park laboratory toward the start of the film, the same day most of the protagonists arrive on the island (Isla Nublar). As far as I know, such trace fossils have not been interpreted from the fossil record, or if they have, they have not been referred to as trace fossils: which they should be.

The next day, after dinosaur paleontologist Alan Grant and his two companions – Lex and Tim Murphy – were sufficiently terrified (and enthralled) by various dinosaur encounters out in the park, they come across a Velociraptor nest. The nest has about 15-20 broken eggs, and the fracture patterns of the eggshells provide clear evidence of hatching. But these traces also had tiny, two-toed tracks leading away from them. The tracks, with two toes studded by digital pads, were typical for deinonychosaurs. However, unlike nearly every theropod track I’ve seen, these tracks lacked claw marks at their ends. (Tsk, tsk, says this nitpicking ichnologist.)

Baby-Velociraptor-Traces-JPAw, look at the cute little Velociraptor tracks and hatched eggs. Don’t these traces just make you want to say, “Who’s the cutest little predator in the world?” Still from Jurassic Park (1993), taken from www.anyclip.com.

Even though these tracks were flashed on the screen for only a few seconds, what’s really cool is how they convey three important pieces of information. One is that the Velociraptor chicks hatched after the torrential rainstorm of the previous night, and thus only mere hours before our wandering heroes saw their traces. Second, the tracks demonstrate that the hatchlings were not altricial, but ready to move and leave the nest immediately, presumably without parental care. Third, Dr. Grant realizes that these successfully fertilized and hatched eggs mean the “female-only” genetic fail-safe plan for the dinosaurs just got disproved. In other words, these traces mattered.

One point about that nest: as far as I could tell from, this Velociraptor mother did not make a rimmed structure to protect the eggs, such as those made by another Late Cretaceous theropod, Troodon, or Late Cretaceous sauropods in Argentina. Instead, the eggs were laid out in the open, like some ground-nesting shorebirds might do. In contrast, the Jurassic Park sequels featured Velociraptor nests that were much more overt as traces, such as a rimmed nest seen in Jurassic Park III.

Troodon-Rim-NestPartially preserved rimmed nest structure of Troodon, a Late Cretaceous theropod that lived in what we now call Montana. The rim has eroded quite a bit since its discovery in the mid-1990s; the Troodon egg clutch was in the area of the foreground before its extraction. (Photograph by Anthony Martin; scale in centimeters.)

Triceratops feces. “That is one big pile of sh*t,” observes Dr. Ian Malcolm, the “chaotician” (mathematician) who supplies both pessimism and comic relief throughout the movie. In this scene, where the main protagonists attend to an under-the-weather Triceratops, two impressive piles of fecal material inspire Dr. Ellie Satler, a paleobotanist, to figure out whether or not the ceratopsian had eaten any toxic plants.

Somehow I suspect this scene was meant as a metaphor for what most paleontologists have to do in their day jobs in order to do any paleontology at all.

Still, when added together, this amount of still-moist waste was far too voluminous to have been from one or two depositional events: I mean, this dinosaur was sick, but not that much. As a result, park personnel must have been responsible for making these dung heaps from several days worthy of Triceratops contributions. (Strictly speaking, then, these heaps were composite traces.) If so, this would have been a rather unenviable job, but maybe they were better paid than Dennis Nedry, the disgruntled computer programmer who later provided ample fodder for Dilophosaurus.

Unfortunately, fossil Triceratops feces (coprolites) are thus far unknown from the geologic record. What is exciting, though, is that several excellent studies have been done by Dr. Karen Chin on Late Cretaceous hadrosaur coprolites. These coprolites, like the fictionalized Triceratops feces, contain lots of plant material, telling us much about what these hadrosaurs ate 75 million years ago. They also tell us what ate the feces or grazed on them, which were dung beetles and snails, respectively. (Indeed, I now wonder if Isla Nubar had a severe shortage of dung beetles, which might explain how those Triceratops feces got piled higher and deeper.)

Two-Medicine-CoproliteDinosaur coprolite – probably from a large hadrosaur, such as Maisaura – and filled with wood fragments, accompanied by special bonus trace fossils: dung beetle burrows! Specimen from the Two Medicine Formation (Late Cretaceous, Montana) as part of a Museum of the Rockies traveling exhibit at Fernbank Museum of Natural History. (Photograph by Anthony Martin, taken in 2001 and scanned from a 35-mm slide; scale in centimeters.)

• Tyrannosaurus tracks. Probably the most memorable scene in Jurassic Park is the grand entrance of the Tyrannosaurus, whose approach is first detected by “impact tremors” transmitted in cups of water on the dashboard of a jeep. Following this first bout of terror and the arrival of Ellie Sattler and big-game hunter Robert Muldoon, Malcolm, convalescing in the back of a jeep, looks down at a three-toed Tyrannosaurus track. The track, filled with water from the rain, communicates a warning as it vibrates from the footfalls of the approaching giant theropod. This repeats the previous image of the trembling water in the cup, but is made doubly dreadful by happening in a freshly made footprint of the same animal causing the tremors.

So what was by far the most exciting moment in the movie for me, ichnologically speaking? The Tyrannosaurus making a track, in which mud pushes up and out to the sides of its right foot, observed at 2:38 in the following video clip. Just watch:

This was already a great scene for all of its action, suspense, and lawyer eating. But check out that track-making!

Only a few fossil tracks have been attributed to Tyrannosaurus or other tyrannosaurids, mostly for being the right size (really big) and geologic age (Late Cretaceous). One was discovered in New Mexico in 1983, but wasn’t reported in a scientific journal until the year after Jurassic Park came out. More than a decade passed before another was found in Montana in 2007 and reported in 2008. Tragically, both were isolated tracks, and a Tyrannosaurus trackway, with two or more consecutive steps, has not yet been found. If so, it would make for a pretty darned nice find. So please do let the world know if you find one.

Large-Theropod-Track-CretaceousA large and well-preserved three-toed theropod track from the Early Cretaceous Glen Rose Formation of Texas, made about 95 million years ago. Although this track was more likely made by Acrocanthosaurus, rather than Tyrannosaurus rex, you can be assured that this theropod, like all living things, was a distant relative of T. rex. (Photograph taken by Anthony Martin; scale in centimeters.)

• Velociraptor tracks (adults). These tracks, shown only for a few seconds, are outside of the Velociraptor enclosure after the power was shut down. Muldoon, accompanied by Sattler, spots the footprints, and he wordlessly identifies them. (His expression also tells the audience that Sattler and he are going to be in deeper doo-doo than the Triceratops piles.) The twisted and broken bars of the enclosure provide additional traces affirming the conclusion that these ‘raptors are on the loose. All of these traces are shown only minutes before Muldoon utters his meme-inspiring last words, “Clever girl.”

Tracking-Velociraptors-JPUh oh: Velociraptor tracks, and these don’t look like they’re from hatchlings. Good thing Muldoon is a big-game hunter, who’s skilled at tracking and predicting Velociraptor behavior based on their tracks. But too bad his hypothesis was falsified in such an unpleasant way, but I suppose he could have picked kinder reviewers. Still from Jurassic Park (1993), taken from www.anyclip.com.

Deinonychosaur-Track-UtahHere’s what a real deinonychosaur track looks like. This one, from the Early Cretaceous of Utah, is a right foot impression, and is just slightly smaller than the adult tracks depicted in Jurassic Park. Notice the digits are thinner and end with sharp clawmarks, too. (Photograph by Anthony Martin; scale in centimeters.)

• Bioerosion of fossil dinosaur bones by modern dinosaurs. Toward the end of the film, the main human heroes – Grant, Sattler, Murphy, and Murphy (which sounds like a law firm, but we know how T. rex feels about those) – are confronted by a Velociraptor pack in the Jurassic Park visitor center. During their attempts to flee the ‘raptors, both species end up disarticulating and breaking some of the mounted dinosaur skeletons in the atrium of the visitor center. Their actions were thus a form of bioerosion, in which the fractured dinosaur bones are traces of their activities. Alternatively, the bones may have been artificial casts, in which case their breakage would have constituted bioerosion of modern substrates.

This bioerosion is made more complicated when the Tyrannosaurus rex (who everyone agrees is the ultimate protangonist of the movie) enters the atrium and, among other antics, smashes a skeleton of itself with a recently crunched Velociraptor. As a result, the jumbled assemblage of bones at the end is attributable to three separate, interacting tracemakers: four humans (two adult, two juvenile), two Velociraptors (both adults), and one Tyrannosaurus (adult). What should be noted, though, is that if the Velociraptor was already dead when flung by the Tyrannosaurus, then the broken skeleton is a trace of the Tyrannosaurus, not the Velociraptor. In other words, the Velociraptor body was just being used as a tool.

Bioerosion in action, as a result of Velociraptor and human interactions. Also, at 2:45: T. rex smash!

Dinosaur Trace-Making Behaviors in Jurassic Park

• Brachiosaurus tracks, browsing traces. When Drs. Grant and Sattler experience their first jaw-dropping glimpse of a Brachiosaurus, they watch it rear up on its hind feet, and come down hard on front feet. Considering that a Brachiosaurus this size might have weighed at least 30 tonnes, it surely would have left deep tracks in both the front and rear from the increased stresses imparted by these actions. Also, its cropping the tops of trees would have caused some easily visible gaps in the canopies of forests on Isla Nubar.

• Theropod toothmarks. Part of the fun of Jurassic Park was indulging in our worst nightmares about these non-avian theropods frequently sampling human flesh. Assuming that the theropod teeth in each instance penetrated skin and muscle and contacted bone, toothmarks would have included the following: (1) Tyrannosaurus toothmarks on goat, human, and Velociraptor bones; and (2) Velociraptor and Dilophosaurus toothmarks on human bones.

• Triceratops resting trace. When the paleontologists and others visit the ailing Triceratops, it was lying on its right side. I couldn’t help but think that if Triceratops or any other large ceratopsian dinosaur ever reclined like that, and in the right type of sediment, it would have left a gorgeous body impression. This scene also reminded me of bison traces I’ve seen in Yellowstone National Park, in which bisons roll onto their sides for a dust bath, leaving outlines of their bodies. Did dinosaurs – especially the feathered ones – ever take dust baths, and leave similar body impressions? We don’t know yet, but such trace fossils are something to look for.

• Dinosaur stampede. One of the most astonishing computer-generated effects of Jurassic Park, and one that was especially effective in 3-D, was of a dinosaur stampede. In this scene, a flock of Gallimus run toward and around Grant, Murphy, and Murphy, just before the ambush-hunting Tyrannosaurus rex slaughters one of them (the Gallimus, that is). I’ve written about this scene before, connecting it to a dinosaur tracksite in Queensland, Australia that has more than 3,000 tracks preserved. Although the site was originally interpreted as the only evidence of a dinosaur stampede, the tracks were recently reinterpreted as swim tracks. I’ll write about this topic at length in my upcoming book, so for now, I ain’t saying nothing more.

Run away, run away!

• Tyrannosaurus drag mark. After the Tyrannosaurus rex decides that a measly goat was just an appetizer and begins seeking out the nearest available mammals for nomming purposes, at some point it overturns and begins pushing an SUV, which still has Lex and Tim Murphy trapped underneath it. Its flipping the SUV with its head certainly would have left a substantial mark on the muddy ground, a trace that then would have been connected to a semi-circular dragmark (clockwise oriented), and with tracks directly adjacent to these traces. Her tracks also may have been deeper in their fronts because of her head being down as she pushed, reflecting a shift in her weight distribution. However, I should again remind everyone that just like with the dead Velociraptor used for bioerosion by this same T. rex later in the film, the SUV is not making the trace. It is only a tool being used by the tyrannosaur, which is the real tracemaker.

• Tyrannosaurus running trackway – This pulse-quickening chase scene, in which the T. rex pursues a jeep driven by Muldoon and with Malcolm and Sattler as passengers, very likely would have caused a wonderful sequence of tracks. These tracks would have shown increasing stride lengths from a standing start to full-speed run, and each successive track would have registered external and internal structures consistent with this acceleration. Even better, the tracks would have cross-cut the jeep tire-tracks at some points, demonstrating to a later observer that the tyrannosaur was very likely following the jeep. (The demolition of a low-hanging tree branch by the T. rex during the chase also counts as some bioerosion along the way.) Some convincing studies have been done since showing that an adult Tyrannosaurus could not have moved as fast as the one in Jurassic Park, but it still could have caught most running humans. And just to repeat what I said earlier, it’d be really nice for someone to find a T. rex trackway, which would give us more direct evidence of how these massive theropods moved.

• Velociraptor scratch marks and other traces. This time, while watching the harrowing and claustrophobic scene in which a pair of Velociraptors hunt the Murphy siblings in a kitchen, I started thinking about the traces they might have left. Did their claws leave scratch marks on the door handles and kitchen counters? Did they indent the steel counters when they jumped up on these surfaces? A broken window is also shown as a trace of their smashing through glass once they became frustrated with a locked door.

OK, enough of the fanciful ichnology. What about other dinosaurs and their traces? Well, it turns out that Jurassic Park saved the real, living dinosaurs for the very end of the movie. These were five brown pelicans (Pelecanus occidentalis), flying in formation as Grant, Sattler, and their companions leave Isla Nubar in a helicopter. For Grant, this is a poignant moment, as he is likely reflecting on how dinosaurs were still with us today as birds. With that thought, I will say “amen,” and add that dinosaur traces – tracks, nests, feces, bite marks, and all – are still here with us, too, and don’t require special glasses to see them in three dimensions. Thanks for that reminder, Jurassic Park.

Pelican-Tracks-SapeloWant to see some modern dinosaur traces? Here are tracks of a brown pelican, made in wet sand while it was loafing on a beach at low tide on Sapelo Island, Georgia. To see more modern dinosaur traces, just go outside, and you’ll find them wherever birds are found. (Photograph by Anthony Martin; scale in centimeters.)

Further Reading

Chiappe, L.M., Schmitt, J.G., Jackson, F., Dingus, L., and Grellet-Tinner, G. 2004. Nest structure for sauropods: sedimentary criteria for recognition of dinosaur nesting traces. Palaios, 19: 89–95.

Chin, K. 2007. The paleobiological implications of herbivorous dinosaur coprolites from the Upper Cretaceous Two Medicine Formation of Montana: why eat wood? Palaios, 22: 554-566.

Chin, K., and Gill, B.D. 1996. Dinosaurs, dung beetles, and conifers: participants in a Cretaceous food web. Palaios, 11: 280-285.

Elbroch, M., and Marks, E. 2001. Bird Tracks and Sign of North America. Stackpole Books, Mechanicsburg, Pennsylvania.

Erickson, G. M., Van Kirk, S. D., Su, J., Levenston, M. E., Caler, W. E., & Carter, D. R. 1996. Bite force estimation for Tyrannosaurus rex from tooth-marked bones. Nature, 382: 706–708.

Gignac, P.M., Makovicky, P.J., Erickson, G.M., and Walsh, R.P. 2010. A description of Deinonychus antirrhopus bite marks and estimates of bite force using tooth indentation simulations. Journal of Vertebrate Paleontology, 30: 1169-1177.

Hutchinson, J.R., and Garcia, M. 2002. Tyrannosaurus was not a fast runner. Nature, 415: 1018-1021.

Jacobsen, A.R. 1998. Feeding behaviour of carnivorous dinosaurs as determined by tooth marks on dinosaur bones. Historical Biology, 13: 17-26.

Lockley, M.G., and Hunt, A.P. 1994. A track of the giant theropod dinosaur Tyrannosaurus from close to the Cretaceous/Tertiary Boundary, northern New Mexico. Ichnos, 3: 213-218.

Manning, P.L., Ott, C., and Falkingham, P.L. 2008. A probable tyrannosaurid track from the Hell Creek Formation (Upper Cretaceous), Montana, United States. Palaios, 23: 645-647.

Martin, A.J. 2013. Life Traces of the Georgia Coast: Revealing the Unseen Lives of Plants and Animals. Indiana University Press, Bloomington, Indiana: 692 p.

Romilio, A., and Salisbury, S.W. 2011. A reassessment of large theropod dinosaur tracks from the mid-Cretaceous (late Albian–Cenomanian) Winton Formation of Lark Quarry, central-western Queensland, Australia: a case for mistaken identity. Cretaceous Research, 32: 135-142.

Romilio, A., Tucker, R., Salisbury, S. 2013. Reevaluation of the Lake Quarry dinosaur tracksite (late Albian-Cenomanian Winton Formation, central-western Queensland, Australia): no longer a stampede? Journal of Vertebrate Paleontology. 33: 1, 102-120.

Sellers, W.I., and Manning, P.L. (July 2007). Estimating dinosaur maximum running speeds using evolutionary robotics. Proceedings of the Royal Society of London, B, 274: 2711-2716.

Thulborn, R.A., and Wade, M., 1979. Dinosaur stampede in the Cretaceous of Queensland. Lethaia, 12: 275-279.

Varricchio, D.J., Jackson, F. and Trueman, C.N. 1999. A nesting trace with eggs for the Cretaceous theropod dinosaur Troodon formosus. Journal of Vertebrate Paleontology, 19: 91-100.

 

Tracking Wild Turkeys on the Georgia Coast

Of the many traditions associated with the celebration of Thanksgiving in the U.S., the most commonly mentioned one is the ritual consumption of an avian theropod, Meleagris gallopavo, simply known by most people as “turkey.” The majority of turkeys that people will eat this Thursday, and for much of the week afterwards, are domestically raised. Yet these birds are all descended from wild turkeys native to North America. This is in contrast to chickens (Gallus gallus), which are descended from an Asian species, and various European mammals, such as cattle, pigs, sheep, and goats (Bos taurus, Sus scrofa, Ovis aries, and Capra aegagrus, respectively).

Trackway of a wild turkey (Meleagris gallopavo) crossing a coastal dune on Cumberland Island, Georgia. Notice how this one, which was likely a big male (“tom”), was meandering between clumps of vegetation and staying in slightly lower areas, its behavior influenced by the landscape. Scale = 20 cm (8 in). (Photograph by Anthony Martin.)

American schoolchildren are also sometimes taught that one of the founding fathers of the United States, Benjamin Franklin, even suggested that the wild turkey should be elevated to the status of the national bird, in favor of the bald eagle (Haliaeetus leucocephalus). With an admiring (although I suspect somewhat facetious) tone, he said:

He [the turkey] is besides, though a little vain & silly, a Bird of Courage, and would not hesitate to attack a Grenadier of the British Guards who should presume to invade his Farm Yard with a red Coat on.”

There are eight of us, and only one of you. Do you really want to mess with us? (Photograph by Anthony Martin, taken on Cumberland Island, Georgia.)

Unfortunately, because I live in the metropolitan Atlanta area, I never see turkeys other than the dead packaged ones in grocery stores. Nonetheless, one of the ways I experience turkeys as wild, living animals is to visit the Georgia barrier islands, and the best way for me to learn about wild turkey behavior is to track them. This is also great fun for me as a paleontologist, as their tracks remind me of those made by small theropod dinosaurs from the Mesozoic Era. And of course, as most schoolchildren can tell you, birds are dinosaurs, which they will state much more confidently than anything they might know about Benjamin Franklin.

Compared to most birds, turkeys are relatively easy to track. Their footprints are about 9.5-13 cm (3.7-5 in) long and slightly wider than long, with three long but thick, padded toes in front and one shorter one in the back, pointing rearward. In between these digits is a roundish impression, imparted by a metatarsal. This is a trait of an incumbent foot, in which a metatarsal registers behind digit III because the rear part of that toe is raised off the ground. The short toe is digit I, equivalent to our big toe, but not so big in this bird. Despite the reduction of this toe, its presence shows that turkeys probably descended from tree-dwelling species, as this toe was used for grasping branches. Clawmarks normally show on the ends of each toe impression, and when a turkey is walking slowly, it drags the claw on its middle toe (digit III), thus making a nicely defined linear groove.

Wild turkey tracks made while it was walking slowly up a gentle dune slope, dragging the claw on the middle digit of its right foot, making a long groove. Also notice the bounding tracks of a southern toad (traveling lower right –> upper left), cross-cutting the turkey tracks. (Photograph by Anthony Martin, taken on Cumberland Island.)

A normal walking pace (right foot –> left foot, left foot –> right foot) for a turkey is anywhere from 15-40 cm (6-16 in), and its stride (right foot –> right foot, left foot –> left foot) is about twice that, or 30-80 cm (12-32 in), depending on the age and size of the turkey. Their trackways show surprisingly narrow straddles for such wide-bodied birds, only 1.5 times more than track widths. This is because they walk almost as if on a tightrope, with angles between each step approaching 180°; so they still make a diagonal pattern, but nearly define a straight line. However, turkeys meander, stop, or change direction often enough to make things interesting when tracking them. Their flocking behavior also means their tracks commonly overlap with one another or cluster, making it tough to pick out the trackways of individual turkeys. However, in such flocks, the dominant male’s tracks are noticeably larger than those of the females or younger turkeys, so these can be picked out and help with sorting who’s who.

Turkey trackway in which it walked across the wind-rippled surface of a coastal dune on Cumberland Island, meandering while moseying. Same photo scale as before. (Photograph by Anthony Martin.)

An abrupt right turn recorded by a turkey’s tracks. Check out that beautiful metatarsal  impression in the second track from the right, and how the claw dragmark in the thrid track from the right points in the direction of the next track. (Photograph by Anthony Martin.)

One of the more remarkable points about these Georgia barrier-island turkeys, though, is how their tracks belie their stereotyped image as forest-only birds. Although they do spend much of their time in the forest, I’ve tracked turkeys through broad swaths of coastal dunes, and sometimes they will stop just short of primary dunes at the beach. So however difficult it might be to think about these birds as marginal-marine vertebrates, their tracks overlap the same places with ghost-crab burrows and shorebird tracks. Geologists and paleontologists take note: this exemplifies the considerable overlap between terrestrial and marginal-marine tracemakers that can happen in coastal environments. This also happened with dinosaurs that strolled onto tidal flats or otherwise passed through marginal-marine ecosystems.

Turkey tracks heading toward the beach, with the open ocean visible just beyond. Is this close enough to consider turkeys as marginal-marine tracemakers? (Photograph by Anthony Martin.)

Do these turkeys also have an impact on the dunes themselves? Yes, although these effects vary, from trackways disrupting wind ripples to more overt changes to the landscape. For instance, one of the most interesting effects I’ve seen is where they’ve caused small avalanches of sand downslope on dune faces. Interestingly, this same sort of phenomenon was also documented for Early Jurassic dinosaurs that walked across dry sand dunes, which caused grainflows that cascaded downhill with each step onto the sand.

Grainflow structure (arrow), a small avalanche caused by a turkey walking down a dune face. (Photograph by Anthony Martin.)

Close-up of grainflow structure (right) connected to turkey tracks, which become better defined once the turkey reached a more level surface. (Photograph by Anthony Martin, taken on Cumberland Island.)

What other traces do turkeys make? A lot, although I’ve only seen their tracks. Other traces include dust baths, feces, and nests. Dust baths, in which turkeys douse themselves with dry sediment to suffocate skin parasites, must be awesome structures. These are described as 50 cm (20 in) wide, 5-15 (1-3 in) deep, semi-circular depressions, and feather impressions show up in those made in finer-grained sediments. Although such structures would have poor preservation potential in the fossil record, I hold out hope that if paleontologists start looking more at modern examples, they are more likely to find a fossil dust bath, whether in Mesozoic or Cenozoic rocks.

Turkey feces, like most droppings from birds, have white caps on one end, but are unusual in that these can tell you the gender of their depositor. Male turkeys tend to make curled cylinders that are about 1 cm wide and as much as 8 cm long (0.4 X 3 in), whereas females make more globular (not gobbular) droppings that are about 1 cm (0.4 in) wide. These distinctive shapes are a result of their having different digestive systems. Turkeys are herbivores, so their scat normally includes plant material, but don’t be surprised to see insects parts in them, too. Still think about how exciting it would be to find a grouping of same-diameter cylindrical and rounded coprolites in the same Mesozoic deposit, yet filled with the same digested material, hinting at gender differences (sexual dimorphism) in the same species of dinosaur maker.

Turkeys normally make nests on the ground by scratching out slight depressions with their feet, but evidently this is a flexible behavior. On at least one of the Georgia barrier islands (Ossabaw), these birds have been documented as building nests in trees. Although this practice seems very odd for a large, ground-dwelling bird, it is an effective strategy against feral hogs, which tend to eat turkey eggs, as well as eggs of nearly every other species of bird or reptile, for that matter. Just to extend this idea to the geologic past, ground nests are documented for several species of dinosaurs, but tree nests are unknown, let alone whether species of ground-nesting dinosaurs were also capable of nesting in trees.

As everyone should know from their favorite WKRP episode, domestic turkeys can’t fly. But wild turkeys can, and use this ability to get into the branches of live oaks (arrow), high above their predators, or even curious ichnologists. (Photograph by Anthony Martin, taken on Cumberland Island.)

So whether or not you have tryptophan-fueled dreams while dozing later this week, keep in mind not just the evolutionary heritage of your dinosaurian meal, but also what their traces tell us about this history. Moreover, it is an understanding aided by these magnificent and behaviorally complex birds on the Georgia barrier islands. For this alone, we should be thankful.

Paleontologist Barbie, tracking wild turkeys on the Georgia coast to learn more about how these tracemakers can be used as modern analogs for dinosaur behavior and traces, and once again demonstrating why she is the honey badger of paleontologists. (Yes, photograph by me, and taken on Cumberland Island. P.S. Happy Thanksgiving!)

Further Reading

Dickson,J.G. (editor). 1992. Wild Turkeys: Biology and Management. Stackpole Books, Mechanicsburg, Pennsylvania: 463 p.

Elbroch, M., and Marks, E. 2001. Bird Tracks and Sign of North America. Stackpole Books, Mechanicsburg, Pennsylvania: 456 p.

Fletcher, W.O., and Parker, W.A. 1994. Tree nesting by wild turkeys on Ossabaw Island, Georgia. The Wilson Bulletin, 106: 562.

Loope, D.B. 2006. Dry-season tracks in dinosaur-triggered grainflows. Palaios, 21: 132-142.

Into the Dragon’s Lair: Alligator Burrows as Traces

American alligators (Alligator mississippiensis) tend to provoke strong feelings in people, but the one I encounter the most often is awe, followed closely by fear. Both emotions are certainly justifiable, considering how alligators are not only the largest reptiles living on the Georgia barrier islands, but also are the top predators in both freshwater and salt-water ecosystems in and around those islands. I’ve even encountered them often enough in maritime forests of the islands to regard them as imposing predators in those ecosystems, too.

Time for a relaxing stroll through the maritime forest to revel in its majestic live oaks, languid Spanish moss, and ever-so-green saw palmettos. Say, does that log over there look a little odd to you? (Photo by Anthony Martin, taken on St. Catherines Island.)

But what many people may not know about these Georgia alligators is that they burrow. I’m still a little murky on exactly how they burrow, but they do, and the tunnels of alligators, large and small, are woven throughout the interiors of many Georgia barrier islands. Earlier this week, I was on one of those islands – St. Catherines – having started a survey of alligator burrow locations, sizes, and ecological settings.

Entrance to an alligator burrow in a former freshwater marsh, now dry, yet the burrow is filled with water. How did water get into the burrow, and how does such traces help alligators to survive and thrive? Please read on. (Photograph by Anthony Martin and taken on St. Catherines Island, Georgia.)

In this project, I’m working cooperatively (as opposed to antagonistically) with a colleague of mine at Emory University, Michael Page, as well as Sheldon Skaggs and Robert (Kelly) Vance of Georgia Southern University. As loyal readers may recall, Sheldon and Kelly worked with me on a study of gopher tortoise burrows, also done on St. Catherines Island, in which we combined field descriptions of the burrows with imaging provided by ground-penetrating radar (also known by its acronym, GPR). Hence this project represents “Phase 2” in our study of large reptile burrows there, which we expect will result in at least two peer-reviewed papers and several presentations at professional meetings later this year.

Why is a paleontologist (that would be me) looking at alligator burrows? Well, I’m very interested in how these modern burrows might help us to recognize and properly interpret similar fossil burrows. Considering that alligators and tortoises have lineages that stretch back into the Mesozoic Era, it’s exciting to think that through observations we make of their descendants, we could be witnessing evolutionary echoes of those legacies today.

Indeed, for many people, alligators evoke thoughts of those most famous of Mesozoic denizens – dinosaurs – an allusion that is not so farfetched, and not just because alligators are huge, scaly, and carnivorous. Alligators are also crocodilians, and crocodilians and dinosaurs (including birds) are archosaurs, having shared a common ancestor early in the Mesozoic. However, alligators are an evolutionarily distinct group of crocodilians that likely split from other crocodilians in the Late Jurassic or Early Cretaceous Period, an interpretation based on both fossils and calculated rates of molecular change in their lineages.

Archosaur relatives, reunited on the Georgia coast: great egrets (Ardea alba), which are modern dinosaurs, nesting above American alligators (Alligator mississippiensis), which only remind us of dinosaurs, but shared a common ancestor with them in the Mesozoic Era. (Photograph by Anthony Martin, taken on St. Catherines Island, Georgia.)

Along these lines, I was a coauthor on a paper that documented the only known burrowing dinosaurOryctodromeus cubicularis – from mid-Cretaceous rocks in Montana. In this discovery, we had bones of an adult and two half-grown juveniles in a burrow-like structure that matched the size of the adult. I also interpreted similar structures in Cretaceous rocks of Victoria, Australia as the oldest known dinosaur burrows. Sadly, these structures contained no bones, which of course make their interpretation as trace fossils more contentious. Nonetheless, I otherwise pointed out why such burrows would have been likely for small dinosaurs, especially in Australia, which was near the South Pole during the Cretaceous. At least a few of these reasons I gave in the published paper about these structures were inspired by what was known about alligator burrows.

Natural sandstone cast of the burrow of the small ornithopod dinosaur, Oryctodromeus cubicularis, found in Late Cretaceous rocks of western Montana; scale = 15 cm (6 in). (Photograph by Anthony Martin, taken in Montana, USA.)

Enigmatic structure in Early Cretaceous rocks of Victoria, Australia, interpreted as a small dinosaur burrow. It was nearly identical in size (about 2 meters long) and form (gently dipping and spiraling tunnel) to the Montana dinosaur burrow. (Photograph by Anthony Martin, taken in Victoria, Australia.)

What are the purposes of modern alligator burrows? Here are four to think about:

Dens for Raising Young Alligators – Many of these burrows, like the burrow interpreted for the dinosaur Oryctodromeus, serve as dens for raising young. In such instances, these burrows are occupied by big momma ‘gators, who use them for keeping their newly hatched (and potentially vulnerable) offspring safe from other predators.

Two days ago, Michael and I experienced this behavioral trait in a memorable way while we documented burrow locations. As we walked along the edge of an old canal cutting through the forest, baby alligators, alarmed by our presence, began emitting high-pitched grunts. This then provoked a large alligator – their presumed mother – to enter the water. Her reaction effectively discouraged us from approaching the babies; indeed, we promptly increased our distance from them. (Our mommas didn’t raise no dumb kids.) So although we were hampered in finding out the exact location of this mother’s den, it was likely very close to where we first heard the grunting babies. I have also seen mother alligators on St. Catherines Island usher their little ones through a submerged den entrance, quickly followed by the mother turning around in the burrow and standing guard at the front door.

Oh, what an adorable little baby alligator! What’s that? You say your mother is a little over-protective? Oh. I see. I think I’ll be leaving now… (Photograph by Anthony Martin, taken on St. Catherines Island.)

Temperature Regulation – Sometimes large male alligators live by themselves in these burrows, like some sort of saurian bachelor pad. For male alligators on their own, these structures are important for maintaining equitable temperatures for these animals. Alligators, like other poikilothermic (“cold-blooded”) vertebrates, depend on their surrounding environments for controlling their body temperatures. Even south Georgia undergoes freezing conditions during the winter, and of course summers there can get brutally hot. Burrows neatly solve both problems, as these “indoor” environments, like caves, provide comfortable year-round living in a space that is neither too cold nor too hot, but just right. The burrowing ability of alligators thus makes them better adapted to colder climates than other crocodilians, such as the American crocodile (Crocodylus acutus), which does not make dwelling burrows and is restricted in the U.S. to the southern part of Florida.

Protection against Fires – Burrows protect their occupants against a common environmental hazard in the southeastern U.S., fire. This is an advantage of alligator burrows that I did not appreciate until only a few days ago while in the field on St. Catherines. Yesterday, the island manager (and long-time resident) of St. Catherines, Royce Hayes, took us to a spot where last July a fire raged through a mixed maritime forest-freshwater wetland that also has numerous alligator burrows. The day after the fire ended, he saw two pairs of alligator tracks in the ash, meaning that these animals survived the fire by seeking shelter, and further reported that at least one of these trackways led from a burrow. The idea that these burrows can keep alligators safe from fires makes sense, similar to how gopher tortoises can live long lives in fire-dominated long-leaf pine ecosystems.

An area in the southern part of St. Catherines Island, scorched by a fire last July, that is also a freshwater wetland inhabited by alligators with burrows. The burrow entrances are all under water right now, which would work out fine for their alligator occupants if another fire went through there tomorrow. (Photograph by Anthony Martin, taken on St. Catherines Island.)

• Protection against Droughts – Burrows also probably help alligators keep their skins moist during droughts. Because these burrows often intersect the local water table, alligators might continue to use them as homes even when the accompany surface-water body has dried up. We saw several examples of such burrows during the past few days, some of which were occupied by alligators, even though their adjacent water bodies were nearly dry.

For example, yesterday Michael and I, while scouting a few low-lying areas for either occupied or abandoned dens, saw a small alligator – only about a meter (3.3 ft) long – in a dry ditch cutting through the middle of a pine forest. Curious about where alligator’s burrow might be, we approached it to see where it would go. It ran into a partially buried drainage pipe under a sandy road, a handy temporary refuge from potentially threatening bipeds. Seeing no other opening on that side of the road, we then checked the other side of the road, and were pleasantly surprised to find a burrow entrance with standing water in it. This small alligator had made the best of its perilously dry conditions by digging down to water below the ground surface.

Alligator burrow (right) on the edge of a former water body. Notice how water is pooling in the front of the burrow, showing how it intersects the local water table. The entrance also had fresh alligator tracks and tail dragmarks at this entrance, showing that it was still occupied despite the lack of water outside of it. (Photograph by Anthony Martin, taken on Cumberland Island, Georgia.)

Alligator burrows (left foreground and middle background) in a maritime forest, also not associated with a wetland but marking the former location of one. Although the one to the left was unoccupied when we looked at it, it had standing water just below its entrance. This meant an alligator could have hung out in this burrow for a while after the wetland dried up, and it may have just recently departed. Also, once these burrows are high and dry, bones strewn about in front of them also add a delicious sense of dread. Here, Michael Page points at a deer pelvis, minus the rest of the deer. (Photograph by Anthony Martin, taken on St. Catherines Island, Georgia.)

What is especially interesting about the American alligator is how the only other species of modern alligator, A. sinensis in China, is also a fabulous burrower, digging long tunnels there too, which they use for similar purposes. This behavioral trait in two closely related but now geographically distant species implies a shared evolutionary heritage, in which burrowing provided an adaptive advantage for their ancestors.

Thus like many research problems in science, we won’t really know much more about alligator burrows until we gather information about them, test some of the questions and other ideas that emerge from our study, and otherwise do more in-depth (pun intended) research. Nonetheless, our all-too-short trip to St. Catherines Island this week gave us a good start in our ambitions to apply a comprehensive approach to studying alligator burrows. Through a combination of ground-penetrating radar, geographic information systems, geology, and old-fashioned (but time-tested) field observations, we are confident that by the end of our study, we will have a better understanding of how burrows have helped alligators adapt to their environments since the Mesozoic.

Juvenile alligators just outside two over-sized burrows, made and used by previous generations of older and much larger alligators. How might such burrows get preserved in the fossil record? How might we know whether these burrows were reused by younger members of the same species? Or, would we even recognize these as fossil burrows in the first place? All good questions, and all hopefully answerable by studying modern alligator burrows on the Georgia barrier islands. (Photograph by Anthony Martin, taken on Sapelo Island, Georgia.)

Further Reading

Erickson, G.M., et al. 2012. Insights into the ecology and evolutionary success of crocodilians revealed through bite-force and tooth-pressure experimentation. PLoS One, 7(3): doi:10.1371/journal.pone.0031781.

Martin, A.J. 2009. Dinosaur burrows in the Otway Group (Albian) of Victoria, Australia and their relation to Cretaceous polar environments. Cretaceous Research, 30: 1223-1237.

Martin, A.J., Skaggs, S., Vance, R.K., and Greco, V. 2011. Ground-penetrating radar investigation of gopher-tortoise burrows: refining the characterization of modern vertebrate burrows and associated commensal traces. Geological Society of America Abstracts with Programs, 43(5): 381.

St. John, J.A., et al., 2012. Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biology, 13: 415.

Varricchio, D.J., Martin, A. J., and Katsura, Y. 2007. First trace and body fossil evidence of a burrowing, denning dinosaur. Proceedings of the Royal Society of London B, 274: 1361-1368.

Waters, D.G. 2008. Crocodlians. In Jensen, J.B., Camp, C.D., Gibbons, W., and Elliott, M.J. (editors), Amphibians and Reptiles of Georgia. University of Georgia Press, Athens, Georgia: 271-274.

Acknowledgements: Much appreciation is extended to the St. Catherines Island Foundation, which supported our use of their facilities and vehicles on St. Catherines this week, and Royce Hayes, who enthusiastically shared his extensive knowledge of alligator burrows. I also would like to thank my present colleagues and future co-authors – Michael Page, Sheldon Skaggs, and Kelly Vance – for their valued contributions to this ongoing research: we make a great team. Lastly, I’m grateful to my wife Ruth Schowalter for her assistance both in the field and at home. She’s stared down many an alligator burrow with me on multiple islands of the Georgia coast, which says something about her spousal support for this ongoing research.

Of Sandhill-Crane Footprints and Dinosaurs Down Under

Last week, while in Athens, Georgia, I found myself musing about footprints from the barrier islands of Georgia and the Cretaceous rocks of Australia, despite their separation by half a world and more than 100 million years. These seemingly random thoughts came to me during a visit to the Department of Geology at the University of Georgia to give a lecture in their departmental seminar series.

It was a pleasure speaking at the geology department for many reasons, but perhaps the most gratifying was how it was also a homecoming. I had worked on my Ph.D. there in the late 1980’s, and in 1988-1989 had taught introductory-geology classes in the very same lecture hall where I gave my presentation. Several of my former professors, who were junior faculty then, are still there and now comprise a distinguished senior faculty. So seeing them there now, their smiling faces in the audience along with the latest generation of undergraduate and graduate students, generated all sorts of warm-and-fuzzy feelings.

But enough about the present: let’s go back about 100 million years to the Cretaceous Period, which was the subject of my talk. I had actually asked to speak about the modern Georgia barrier islands and their traces: you know, the main theme of this blog and my upcoming book of the same title (Life Traces of the Georgia Coast, just in case you need reminding). Nonetheless, my host and valued friend, paleontologist Dr. Sally Walker, figured that a summary of my latest research on the Cretaceous trace fossils of Victoria, Australia would bring in a wider audience, especially if I used the magical word “dinosaur” in the title (which I did).

For my talk at the UGA Department of Geology, I could have talked about this place – St. Catherines Island, Georgia – and it’s modern traces. After all, it’s only about a four-hour drive and short boat ride from Athens, Georgia.

But instead I talked about this place – coastal Victoria, Australia – and its trace fossils from more than 100 million years ago. Which wasn’t such a bad thing.

In retrospect, she was right, and I thoroughly enjoyed putting together an informative and (I thought) entertaining presentation that shared highlights of fossil discoveries from that part of Australia during the past five years. For the benefit of the students in the audience, basic geology was woven throughout the talk, as I included facets of sedimentology, stratigraphy, geochemistry, paleobotany, paleoclimatology, plate tectonics, evolution, history of science, field methods, and oh yes, dinosaurs. (If you are interested in hearing more about the science and personal experiences behind these recent findings in Australia, these are related in another blog of mine written previous to this one, The Great Cretaceous Walk.)

So how do the barrier islands of the Georgia coast and their animal traces relate to the Cretaceous of Australia? I mentioned the main reason briefly in my talk, but will elaborate more here: I likely owed one of my most important fossil discoveries in Australia to track-imprinted memories gained from field work on the Georgia coast. The fossil find, which happened in June 2010, was of about two dozen thin-toed theropod dinosaur tracks in Cretaceous rocks along the Victoria coast. These tracks represent the best assemblage of dinosaur tracks found thus far in southern Australia, and the largest collection of polar-dinosaur tracks in the Southern Hemisphere. Moreover, some of these tracks just happened to be about the same size and forms of footprints made by sandhill cranes (Grus canadensis).

Comparison between the footprint of a sandhill crane (Grus canadensis), made in moist sand next to a freshwater pond, St. Catherines Island, Georgia (top), and a footprint made by a theropod dinosaur about 105 million years ago on a river floodplain, Victoria, Australia (bottom). Notice the resemblance?

Sandhill cranes do not normally live on the Georgia barrier islands, and nearly all of them simply fly over or stop briefly during their annual migrations from south of Georgia to the Great Plains, or vice versa. However, at least a few have settled on St. Catherines Island, the same place on the Georgia coast where I recently studied gopher tortoise burrows. According to Jen Hilburn, the island ornithologist, some of these cranes found life so comfortable on the island that they stayed. This turned out to be fortunate for me, as I became familiar with their tracks after repeated visits to St. Catherines. Even though these tall, beautiful, and majestic birds restrict themselves to just one island year-round, St. Catherines is big enough to hold a wide variety of habitats and substrates, so I have seen their tracks in salt marshes, next to fresh-water ponds, and along dusty roads throughout the entire length of the island.

Who are you calling a “dinosaur”? A sandhill crane on St. Catherines Island graciously poses for its portrait, helping this ichnologist get a better idea of what an anatomically similar tracemaker might have looked like more than 100 million years ago.

Sandhill-crane trackway on the sandy substrate of a high salt marsh, St. Catherines Island, Georgia. In this environment, its tracks are accompanied by fiddler-crab burrows and feeding pellets, as well as the tracks and dig marks of raccoons hunting the fiddler crabs. Scale (toward the top of the photo) in centimeters.

So to make a long story short, while walking along the Victoria coast last year, I also carried with me mental picture of these tracks in Georgia. These images, I am sure, contributed to my stopping to look at a rock surface that held faint but nearly identical impressions made by dinosaurian feet on the once-soft sediments of a river floodplain. This is how ichnology is supposed to work, and it did.

A comparison between sandhill-crane tracks on the Georgia barrier islands and those of Cretaceous dinosaurs in Australia is actually not as far-fetched as one might think at first. For one, we now know that birds are dinosaurs, evolutionarily speaking. This formerly vague hypothesis is now a certainty, and is based on an ever-improving fossil record of feathered theropod dinosaurs, as well as studies from modern biology that show genetic and developmental affinities between modern birds and theropods. Even so, this idea is not new, either. For example, evolutionary biologist Thomas Huxley (1825-1895), friend and noted proponent of Charles Darwin, readily connected Archaeopteryx, the Late Jurassic bird (or dinosaur, depending on evolutionary perspective) with theropod dinosaurs.

Preceding Huxley, though, was one of the first scientists to formally apply ichnology to fossilized dinosaur tracks, Edward Hitchcock (1793-1864). Hitchcock interpreted the abundant dinosaur tracks of the Connecticut River Valley – many made by theropods – as those of large, flightless birds that lived before humans. Although he never made the evolutionary connection between dinosaurs and birds, his hypothesis reflected anatomical similarities between their feet.

A close-up look at sandhill crane feet while it takes a step. Notice the left foot has a little toe facing backwards, but off the ground. This is the equivalent of our “big toe,” also known as digit I, and it rarely registers in their tracks unless a crane walks in soft mud or sand. Instead, you will see impressions of the other three toes with clawmarks, and the middle toe normally makes the deepest mark.

Theropod dinosaurs, like many modern birds, mostly made three-toed tracks, a condition also called tridactyl. Although theropod tracks are occasionally confused with similar tracks made by ornithopod dinosaurs, they have the following traits: (1) three prominent, forward-facing digit impressions; (2) a footprint that is longer than wide; (3) angles of less than 90° between the outermost digits; and (4) well-defined clawmarks. One of the many changes that happened to bird feet as they evolved from non-avian theropods was the dropping of and rearward projection of their first digit (equivalent to our big toe). This condition was a great adaptation for grasping branches in trees and otherwise getting around off the ground. Bird tracks from the Cretaceous Period also tend to be wider than long, a function of the angles between the outermost toes becoming greater than 90°, and most of these also show the impression of a backward-pointing toe. Sandhill-crane footprint made in firm sand of a high salt marsh, St. Catherines Island, Georgia. Like many bird tracks, this one is wider than it is long, which is unlike most theropod dinosaur tracks. Still, these are very similar to tracks made by certain types of thin-toed theropod dinosaurs during the Cretaceous Period. Scale in centimeters.

Much later in their evolutionary history, though, some lineages of birds became either flightless or otherwise spent more time on the ground than in the trees, such as wading birds and shorebirds. These circumstances resulted in their first digit becoming reduced or absent, or vestigial. Violá, the tridactyl theropod-dinosaur footprint came back in style, so to speak, and now dinosaur ichnologists regularly study the tracks and behaviors of birds with such feet to better understand how their theropod relatives may have moved during the Mesozoic Era.

Comparison of a track made by a greater rhea (Rhea americana, right), which is a large flightless bird native to Argentina, to that of an equivalent-sized theropod dinosaur track (right). Both tracks have three forward-facing digits ending with sharp clawmarks and are longer than wide. Scale = 15 cm (6 in). The dinosaur track is a replica of an Early Jurassic theropod (from about 200 million years ago) from the western U.S. Photograph of the rhea track is by Anthony Martin, and of the dinosaur-track replica is by Ty Butler of Tylight™. Scale in the photo to the left = 15 cm (6 in).

Thus while writing the research paper on the dinosaur tracks, I kept in mind the comparison between sandhill-crane footprints in Georgia and the Australian dinosaur tracks. I also recalled how paleontologists had previously measured theropod skeletons – feet and rear limbs, specifically – and proposed a relationship between foot length and probable hip height.

Based on these studies, you can take a theropod track, multiply it by 4.0, and you get the approximate hip height of its trackmaker. When I applied this calculation to the Australian tracks, their hip heights ranged from about 25 to 60 centimeters (10-23 inches). The smallest of these dinosaurs I imagined as chicken-sized; perhaps these were juveniles of the larger ones. But what might be living today that would compare to the largest of the trackmakers? Immediately I thought of herons, but then it struck me that sandhill cranes provided a more apt analogy.

So I think you know where this is going. Adult sandhill-crane tracks are about 12 centimeters (4.7 inches) long, so if you apply the same formula for theropod-dinosaur tracks to them, their hip heights should be 48 centimeters (19 inches). Would this relationship also hold up on a modern dinosaur, such as a sandhill crane?

Just to satisfy my curiosity, I wrote to Jen Hilburn (St. Catherines Island) and asked her to do me a little favor: could she measure the hip height of a living, adult sandhill crane for me? Fortunately, Jen carried out my unusual request (she said it was not easy, so I definitely owe her), and she wrote back with an answer: 58 centimeters (22 inches). This wasn’t a perfect fit with regard to the footprint formula, but it certainly worked for the size of the Australian dinosaurs I had in mind as trackmakers. Based on my study of the Australian tracks, they were made by small ornithomimids, which likewise made thin-toed tridactyl tracks.

After thanking Jen, I delighted in explaining how her measurement of a Georgia-island-dwelling sandhill crane related to a dinosaur-track discovery on the other side of the world. Furthermore, in the Emory University press release that accompanied the publication of the dinosaur-track discovery in August 2011, the reporter (Carol Clark) used my analogy of the trackmakers as “…theropods ranging in size from a chicken to a large crane.”

Sandhill crane walking down a sand pile next to a fresh-water pond and maritime forest on St. Catherines Island, Georgia, and leaving lovely tracks for an ichnologist to study and keep in mind while tracking non-avian theropod dinosaurs.

Artist conception of Struthiomimus, a Late Cretaceous non-avian theropod dinosaur from western North America. Although not a perfect fit, the tracks of cranes and other similarly sized birds can be compared to those of ornithomimid dinosaurs to better discern the presence and behaviors of these dinosaurs. Artwork by Nobu Tamura and from Wikipedia Commons.

What other modern traces from the Georgia coast will contribute to our better understanding the fossil record? Time will tell, and I hope some day to again share those thoughts at my former home – the Department of Geology at the University of Georgia – with friends, students, and colleagues, new and old.

Further Reading

Elbroch, M., and Marks, E. 2001. Bird Tracks and Sign: A Guide to North American Species. Stackpole Books, Mechanicsburg, PA: 456 p.

Forsberg, M. 2005. On Ancient Wings: The Sandhill Cranes of North America. Michael Foreberg Photography: 168 p.

Henderson, D.M. 2003. Footprints, trackways, and hip heights of bipedal dinosaurs: testing hip height predictions with computer models. Ichnos, 10: 99–114.

Johnsgard, P.A. 2011. Sandhill and Whooping Cranes: Ancient Voices over America’s Wetlands. University of Nebraska Press, Lincoln, NB: 184 p.

Lockley, M.G. 1991. Tracking Dinosaurs: A New Look at an Ancient World. Cambridge University Press, Cambridge, UK: 264 p.

Martin, A.J., Anthony J., Rich, T.H., Hall, M., Vickers-Rich, P., and Gonzalo Vazquez-Prokopec. 2011. A polar dinosaur-track assemblage from the Eumeralla Formation (Albian), Victoria, Australia. Alcheringa: An Australiasian Journal of Palaeontology, article online August 9, 2011. DOI: 10.1080/03115518.2011.597564