A Tale (and Tails) of Two Islands

After visiting Cumberland Island and Jekyll Island, our Barrier Islands class had entered its third day (Monday, March 11), and was now about to embark onto our third and fourth barrier islands of the Georgia coast. These islands were a Pleistocene-Holocene pair – St. Simons and Little St. Simons, respectively – and the latter was our primary goal. After all, Little St. Simons is a privately owned and undeveloped island, one of the few that has not been logged or otherwise majorly altered by those ever-nefarious and industrious post-Enlightenment humans. St Simons, though, had its own lessons to teach us, including a realization I had that ichnological factors (bivalve feces, specifically) had played a role in deciding the fate of European power struggles on the Georgia coast during the 18th century.

Just like the previous two posts, this one will be told through photos and captions, which I hope captures much of what my students and I learned during our times on these two islands. Just watch out for those tails.

Little St. Simons is a privately owned island, but is available for day tours of groups like ours that are led by their knowledgeable and friendly naturalists. Soon after arriving by small boats on the island and being greeted by the naturalists assigned to us, Laura (pictured) and Ben (you’ll see him soon enough). While there, Laura provided a brief introduction to the geological history of Little St. Simons: Holocene (probably only a few thousands years old), and rapidly gaining weight (sediment, that is) each year, supplied by the nearby Altamaha River.

Check out our air-conditioned field vehicles! Seeing that this is a field course, traveling this way was ideal for experiencing the island a bit more directly, yet without descending in a Heart-of-Darkeness or Lord-of-the-Flies sort of mode. Because that would be bad.

Little St. Simons has a healthy number of freshwater wetlands for such a small island (like this one), more closely resembling what used to be on the Georgia barrier islands before a few people decided that plantations and paper mills were great ideas.

Say, isn’t that an all-American bird? Yes, it is, but more importantly, it has a rather prominent trace next to it – a bald eagle nest – that is also occupied by a couple of young eagles. (Here, one is sticking its head out of the nest while being overseen by a protective parent.) Bald eagle nests are among the largest tree nests made by any modern bird, leading me to wonder what tree-dwelling dinosaur nests from the Cretaceous Period must have looked like.

Sorry folks, can’t get enough of bird traces on this island. Many of the tree trunks on Little St. Simons bear the horizontally aligned holes of yellow-bellied sapsuckers. These woodpeckers pierce tree trunks to cause the tree to bleed sap, which attracts insects, which get stuck, which get eaten by the sapsuckers. Sap + insects = tasty treat!

Armadillo tracks on a coastal dune at the north end of the island show just how far-ranging these mammals can get. Having only recently arrived to the Georgia coast since the 1970s, these prolific tracemakers are now on every island.

Near the armadillo tracks, also in the coastal dunes, were these mystery burrows. I had no idea what made these, as they were too small to be mole burrows, too big to be insect burrows, and too horizontal to be mouse burrows. Just a reminder that even the author of a 700-page book about Georgia-coast traces still has a lot more to learn.

Aw, look at this cute little baby alligator, which was near its momma in one of the freshwater ponds on Little St. Simons. I wonder where it came from originally?

Why, there’s where it came from: it’s momma’s nest! The arrow is pointing toward a now mostly collapsed alligator nest, which hatched the little tykes that are now in the nearby wetland. Alligator nests are composed mostly of loose vegetation that the mother collects and piles, enough that it will give off heat to incubate her eggs. Such nests have very poor preservation potential in the fossil record, but it is still very interesting to study how they disintegrate so rapidly.

Alligators (left) and birds (right, with one on her nest) last shared a common ancestor early in the Mesozoic Era, but here they are, working together to their mutual benefit. Great egrets and woodstorks nest on islands, which are guarded by large alligators, who are good deterrents to egg predators. (In a grudge match between an alligator and raccoon, who do you think would win?) As payment for this protection, alligators get an occasional chick falling out of the nest, a small evolutionary price for the birds to pay when compared to an entire clutch of eggs getting munched.

My, what a noisy tail you have! We were delighted to encounter this diamondback rattlesnake on one of the sandy roads of Little St. Simons, which urged us to approach it carefully, using a clearly audible warning and threat postures. (P.S. It worked.)

Our other guide, Ben, had an obviously deep affection for venomous reptiles, expressed first through some impromptu snake-handling. (No, he did not use his hands, nor did he speak in tongues. See that snake-handling device in his right hand?) Following our not-too-close encounter, he expounded on the ecological importance of rattlesnakes to the island, and related some interesting facts about rattlesnake behavior. Gee, you think the students might remember some of this lesson? (Personal note: Bring rattlesnakes into the classroom more often.)

At the south end of Little St. Simons is a very nice beach, and on that beach were – you guessed it – shorebird tracks. Here are some plover tracks, which could be from Wilson’s plovers, semi-palmated plovers, or some other species.

Sadly enough, our tour of Little St. Simons lasted only until 3:00 p.m., so we had some time on St. Simons to do a bit more learning. So I decided we would stop at Fort Frederica National Monument, on the north end of St. Simons Island. It turned out this was a educationally sound decision, especially when one of the rangers on duty – Mr. Ted Johnson (right) – volunteered to give our group a spirited and informative lecture about the former military importance of Fort Frederica. However, judging from the downcast looks on several of the students, I imagine they were already missing alligators, snakes, and shorebirds of Little St. Simons Island, and (of course) their traces.

The most obvious human traces at Fort Frederica are these “footprints” (foundations) of some of the buildings there in the 18th century. Established as a British outpost in Georgia to compete with the Spanish presence to the south, Fort Frederica was a thriving town as long as the military was there.

OK, you’ve no doubt read this far to find out how bivalve feces helped the English to defeat the Spanish in the mid-18th century and consequently gain a permanent foothold in Georgia (until those pesky colonials defeated them later that century, that is). See where the fort is located? Right on a point, facing a tidal channel, and with salt marsh on either side of it. Because the salt marshes are largely composed of feces and similar muddy ejecta of ribbed mussels and other invertebrates, these make for wonderfully gooey substrates. Such substrates tend to discourage rapid movement of ordinance-laden ground troops, which forced the Spanish to try other means for attacking the fort, which failed. Bivalve feces for the win! Traces rule! ¡En la cara, los conquistadores!

As our day neared an end, my students decided that an appropriate way to signal their pleasure with all they had learned was for them to give me the now-official fiddler crab salute, waving their mock claws in unison. We all plan to still use this when greeting on the Emory campus, which should thoroughly mystify other students, faculty, and especially administrators, the latter of whom will wonder if it is some sort of secret-society sign. (Which, in a sense, it will be. Be afraid. Be very afraid)

What island was next on our journey? My old favorite, Sapelo Island, just to the north of Little St. Simons and St. Simons, and as different from these as the preceding islands were from one another. Stay tuned for those photos and comments in just a few days, and get ready to learn.

Cumberland Island, Georgia: Not a Barrier to Education

When learning about the natural sciences, there comes a time when just reading and talking about your topics in the confines of a classroom just doesn’t cut it. This semester, we had reached that point in a class I’m teaching at Emory University (Barrier Islands), in which we all needed a serious reality check to boost our learning. So how about a week-long field trip, and to some of the most scientifically famous of all barrier islands, which are on the coast of Georgia?

Last Friday, March 8, our excursion officially began with a long drive from the Emory campus in Atlanta, Georgia to St. Marys, Georgia. Fortunately, Saturday morning was much easier, only requiring that we walk across the street, step onto a ferry, and ride for 45 minutes to Cumberland Island. Cumberland was our first island of the trip, and the southernmost of the Georgia barrier islands. I have written about other topics there, including the feral horses that leave their mark on island ecosystems, the tracks of wild turkeys, and those marvelous little bivalves, coquina clams.

So rather than my usual loquacious ramblings, punctuated by whimsical asides, this blog post and others later this week will be more photo-centered and accompanied by mercifully brief captions. This approach is not only a practical necessity for proper time management while teaching full-time through the week, but also is meant to give a sense of the daily discoveries that can happen through place-based learning on the Georgia coast. I hope you learn with us, however vicariously.

After a 45-minute ferry ride to Cumberland Island, the students received a different sort of lecture when naturalist extraordinaire Carol Ruckdeschel – who is writing a book about the natural history of Cumberland Island – met with them and gave them a brilliant overview of the island ecology. She mostly talked with the students about the effects of feral animals on the island, then spent another hour with us in the maritime forest and through the back-dune meadows. It was a real treat for the students and me, and a great way to start the field trip.

A leaf-cutter bee trace! Despite my writing about these and illustrating them in my book, these distinctive incisions were the first I can recall seeing on the Georgia barrier islands. These traces were abundantly represented in the leaves of a red bay tree we spotted along a trail through the maritime forest, making for a great impromptu natural history lesson for the students.

A freshly erupted ghost shrimp burrow on the beach at Cumberland, in which the students were lucky enough to witness the forceful ejection of muddy fecal pellets by the shrimp from the top of its burrow. I mean, really: explain to me how the life of an ichnologist-educator can get any better than that?

The fine tradition a field lunch, made even more fine by the addition of fine quart sand to our meals, freely delivered by a brisk sea breeze. Did the sand leave any microwear marks on our teeth? I certainly hope so.

A student is delighted to test my ichnologically based method for finding buried whelks underneath beach sands, and find out that it is indeed correct. (Was there any doubt?) Here she is proudly holding a live knobbed whelk, which I can assure you she promptly placed back into the water once its photo shoot was finished for the day.

Just to join in the fun, other students decided my “buried whelk prospecting” method required further testing. Let’s just say this student did not disprove the hypothesis, but rather seemed to confirm it, and doubly so. It’s almost as if ichnology is a real science! (Yes, these whelks went back into the water, too.)

OK, enough about marine predatory gastropods (for now). How about some of the largest horseshoe crabs (limulids) in the world? We found a large deposit of their carapaces above the high-tide mark, some of which were probably molts, but others recently dead. Sadly, though, we did not see any of their traces. Bodies only do so much for me.

Where do dunes come from? Well, a mother and father dune love each other very much… No wait, wrong story. What happens is that dead cordgrass from the salt marshes washes up onto the beach, where it starts slowing down wind-blown sand enough that it accumulates. Now it just needs some wind-blown seeds of sea oats and other plants to start colonizing it, and next thing you know, dune. Dude.

Ah, a geological tradition in action: comparing actual sand from a real outdoor environment to the sand categories on a handy grain-size chart, and using a hand lens. It’s enough to bring a tear to the eyes of this geo-educator. Or maybe that was just the wind-blown sand.

Finally, something that really matters, like ichnology! This is a three-for-one special, too: sanderling feces (left), tracks, and regurgitants (right), the last of these also known as cough pellets. Looks like it had coquina and dwarf surf clams for breakfast.

Wow, more shorebird traces! The tracks are from a loafing royal tern, and it clearly needed to get a load off its mind before moving on with the rest of its day.

Tired of shorebird traces? How about a modern terrestrial theropod? Wild turkey tracks in the back-dune meadows of Cumberland were a happy find, leading to my grilling the students with the seemingly simple question, “What bird made this?” They did not do well on this, but hey, it was the first day, and at least no one said “robin” or “ostrich.”

Did somebody say “doodlebug?” This long, meandering, and collapsed tunnel of an ant lion (a larval neuropteran, or lacwing) tells us that this insect was looking for prey in all the wrong places.

Behold, tracks that bespeak of great, thundering herds of sand-fiddler crabs that used to roam the sand flats above the salt marsh. Where have they gone, and will they ever come back? Who knows where the males might be waving their mighty claws? Do the female fiddler crabs suffer from big-claw envy, or are they enlightened enough to reject cheliped-based hierarchies imposed upon them by fiddler-crab society? All good questions, deserving answers, none of which make any sense.

Yes, that’s right, feral horses are really bad for salt marshes. Between overgrazing and trampling, they aren’t exactly what anyone could call “eco-friendly.” My students had heard me say this repeatedly throughout the semester, and Carol Ruckdeschel said the same thing earlier in the day. But then there’s seeing it for themselves, another type of learning altogether.

And the day ended with beautiful ripple marks, beckoning from the sandflat below the boardwalk on our trip back onto the ferry. Even this ichnologist can appreciate the aesthetic appeal of gorgeous physical sedimentary structures.

What’s the next island? Jekyll, which is just north of Cumberland along the Georgia coast, visited yesterday. Stay tuned, and look for those photos soon.

Deconstructing an Ichnology Abstract, with Alligators

Many people from outside of the realm of academia (or is it a fiefdom?) prefer to get the latest scoops on new paleontological or geological research directly from the source, rather than just reading a press release or news article about it. As someone looking from the inside out, I’m pleased to see so many non-scientists try to probe one layer deeper with their understanding of a beloved scientific topic that interests them, and I try to encourage it through my own blogging, speaking, teaching, and other forms of outreach.

An alligator den on St. Catherines Island, (Georgia), with baby alligator and “big momma” alligator for scale. This week, I presented a poster with about these big burrows and their makers  at the Society of Vertebrate Paleontology meeting in Raleigh, North Carolina. The original field work we did for this research was reported back in March here, and now we’re ready to share more of what we found out. (Photograph by Anthony Martin.)

Unfortunately, many of the original research articles that become subjects of media attention are behind paywalls, requiring a reader to pay for access to read those articles, even if the research was publicly funded. This practice is especially common if the research is published in one of those glamorous journals that seemingly make or break academic careers in science, regardless of the lasting quality of the research. (I won’t name them directly, but let’s just say that’s the nature of science nowadays.)

So one option for these curious folks is to read abstracts from proceedings volumes of professional meetings. Abstracts, which ideally are succinct summaries highlighting the most significant findings of a given study, can thus serve as a way for the public to at least get a few insights on the latest scientific research happening in their favorite disciplines.

Want to get below the surface with this research? Oh, sorry, I was just being metaphorical. You really don’t want to go below the surface of an alligator den, which is why we mostly studied abandoned ones, mapped them, and otherwise tried to use methods that didn’t bother the alligators or otherwise have uncomfortable encounters with them.

Along those lines, the annual meeting of the Society of Vertebrate Paleontology (SVP) has been taking place this week in Raleigh, North Carolina, and it has an abstract volume associated with the meeting. Regrettably, though, the general public does not have access to these abstracts, only SVP members and people who have registered for the meeting. The Society of Vertebrate Paleontology also has a policy regarding researchers who publicly share their research results based on these abstracts, muddied by the word “embargo.” In short, this policy holds that people working for the media, which include reporters and bloggers (the latter of whom are also sometimes reporters), cannot write about and otherwise publicize research results presented at the meeting. That is, unless the researchers have given their permission to do so, or the results have been freely distributed by the researchers through a press release, blog, or other forms of outreach.

So in the spirit of the public having easier access to this primary scientific information, the following is our SVP abstract, which I presented as a poster at the meeting yesterday. The abstract is co-authored with Michael Page (Emory University), Sheldon Skaggs (Georgia Southern University), and R. Kelly Vance (also Georgia Southern University), and we worked together on the research, writing, and editing of the abstract. Because this abstract also includes a lot of scientific shorthand (charitably referred to as “jargon”), I also included a sentence-by-sentence explanation of it, in which the abstract text is in italics and my explanation is in formal typeface. So I hope you, the gentle reader, get something from this exercise in explanation, and we look forward to sharing more of this research with you as it continues to evolve and we publish it sometime next year as a peer-reviewed paper.

DENS OF THE AMERICAN ALLIGATOR (ALLIGATOR MISSISSIPPIENSIS) AS TRACES AND THEIR PREDICTIVE VALUE FOR FINDING LARGE ARCHOSAUR BURROWS IN THE GEOLOGIC RECORD

MARTIN, Anthony J., Emory University, Atlanta, GA, United States; PAGE, Michael, Emory University, Atlanta, GA, United States; SKAGGS, Sheldon, Georgia Southern University, Statesboro, GA, United States; VANCE, Robert K., Georgia Southern University, Statesboro, GA, United States

Large archosaur burrows are rarely interpreted from the geologic record, a circumstance that may be attributable to a lack of search images based on modern examples, rather than actual rarity.

Archosaurs make up an evolutionarily related group of vertebrates that include crocodilians (alligators and crocodiles), dinosaurs (the non-bird ones, that is), birds, and their extinct relatives. A few of the larger extinct archosaurs may have dug burrows, but paleontologists have reported very few of these, with one exception being the small Cretaceous ornithopod dinosaur Oryctodromeus cubicularis, found in its burrow with two juveniles of the same species. The authors are proposing here that this “rarity” of archosaur burrows in the fossil record might be more attributable to paleontologists not knowing what modern archosaur burrows look like. So they don’t recognize the fossil ones, leading to a perceived rarity rather than an actual one.

To test this idea, we measured, imaged, and mapped den structures of the American alligator (Alligator mississippiensis) on St. Catherines Island (Georgia, USA).

By “measured,” I mean that my colleagues and I used a low-tech instrument known as a “tape measure” to assess the width and height of an alligator den entrance. By “imaged,” we used a much more technologically complex instruments and method, called ground-penetrating radar (GPR) in combination with computers to figure out what these dens looked like below the surface. By “mapped,” I mean that we looked for alligator dens on St. Catherines Island (Georgia) and recorded their locations using a handheld GPS (global positioning system) unit, then plotted the distribution of these points to see if any patterns emerged.

St. Catherines is an undeveloped barrier island on the Georgia coast, consisting of Pleistocene and Holocene sediments.

St. Catherines Island is undeveloped in the sense that very few buildings or people live on the island year-round. It is privately owned and reserved for researchers’ uses under the direction of the St. Catherines Island Foundation. Like most of the Georgia barrier islands on the southern part of its coast, St. Catherines also has a geologically complex history. Its northwestern end is made of sediments deposited about 40,000 years ago – during the Pleistocene Epoch – whereas its southeastern end is made of much more recent sediments from the Holocene Epoch.

Alligators dug most dens along the edges of freshwater ponds in loosely consolidated Holocene or Pleistocene sand.

This sentence doesn’t need much more explanation other than to reemphasize that alligators gravitate to freshwater ecosystems to dig their dens (pictured below), not saltwater ecosystems, like salt marshes or coastal dunes.

Adult female alligators use dens to protect offspring, but burrows also aid in thermoregulation or serve as refugia for alligators during droughts and fires.

This is probably the neatest insight we gained from doing the research, is that the dens aren’t just used by big momma ‘gators for raising baby ‘gators, but also to make sure alligators of all ages are cozy during winters, stay wet during droughts, and are safe from fires. For instance, because southern Georgia has been going through a drought the past few years, some of the occupied dens we saw were in places that were high-and-dry, but the dens themselves intersected the local water table (seen in one photo above).

Some dens are evidently reused and modified by different alligators after initial construction.

This is an important point for paleontologists to know, and probably shouldn’t have been buried so far into the abstract, but we couldn’t very well put it at the beginning, either. Dens, like other homes, get used again, and probably by generations of alligators. This means that once a den is dug, stays open, and has a wetland nearby, alligators may just move into an abandoned den and modify it if needed, an alligator form of “home improvement.”

Drought conditions along the Georgia coast have exposed many abandoned dens, thus better allowing for their study while increasing researcher safety.

The drought is bad for alligators but was good for us when we did our field work, because so many dens were abandoned and exposed on dry land. This also eased any concerns we had about bothering the alligators, but especially alleviated worries we might have had about close encounters with protective parents near occupied dens. To be sure, we ran into a few of those, but not as many as we would have if conditions had been wetter.

Den entrances have half-moon cross-sections, and based on one sample (n = 20), these range from 22-115 cm wide (mean = 63 + 23 cm) and 14-55 cm high (23 + 9 cm).

I like throwing numbers into ichnology, just to remind people that this is a part of it as a science. Although our sample size is small compared to other studies of traces and trace fossils, it gives people an idea of the range of sizes of these dens, or at least their entrances. As an exercise in the imagination, think about whether you could squeeze into one of these. You know, if you were crazy enough to do such a thing.

In addition to field descriptions, we applied geographic information systems (GIS) and ground-penetrating radar (GPR) to help define the ecological context and subsurface geometry of these structures, respectively.

Computer-aided mapping methods like GIS helped us to test how alligators decided to make dens as a function of the landscape. For instance, we found most of their dens were in lower-elevation areas, which made sense when you think about water accumulating in those places. And the GPR served the dual purpose of not bothering the alligators if they were in their dens, while also keeping us away from their, um, denizens. (Sorry.)

GIS gave spatial data relatable to alligator territoriality, substrate conditions, and proximity to potential nest sites. GPR produced subsurface images of active dens, which were compared to abandoned dens for a sense of taphonomic history.

Big alligators tend to stay away from other big alligators. They also tend to burrow in sediments that don’t take too much effort for them. Female alligators also make their nests close to water bodies and dens, so their little tykes don’t have to travel so far to the water. Newer, active dens were also compared to those no longer being used to see what happens to them over time with neglect, kind of like how an old, abandoned house tends to fall apart and collapse on itself over time.

Most den entrances are southerly facing, with tunnels dipping to the northwest or northeast.

This is pretty self-explanatory, but I’ll just ask readers to think about why these dens are oriented like this.

From entrances, tunnels slope at about 10-15°, turn right or left within a meter, and lead to enlarged turn-around chambers.

Pure description here too, but by “turn-around chamber,” that means the den has enough room inside the den for a big adult alligator to go in head-first and turn around so that it’s head is right at the entrance. (See the photo of “big momma” at the top for an example of that.)

Collapsed dens in formerly ponded areas (secondary-succession maritime forests) provided further insights into subsurface forms of these structures.

Dens left high-and-dry from years ago and taken over by forests collapsed in a way that we could see the full outline of the den and measure these.

These features are: 3.1-4.6 m long; 30-40 cm deep, relatively narrow at either end (35-60 cm), and 1.2-1.6 m wide in their middles.

Dude. Those are big burrows. Dude.

Expansive areas were probable turn-around chambers, and total volumes of collapsed dens accordingly reflect maximum body sizes of their former occupants.

The bigger the den, the easier it was for a large occupant to turn around in it. And although smaller, younger alligators could have lived in these dens, some of the dens were too small to allow the really big alligators from moving into them.

One sampled area (8,100 m2), an almost dry former pond, had 30 abandoned dens, showing how multiple generations of alligators and fluctuating water levels can result in dense concentrations of alligator burrows over time.

Think of an area about the size of an American football field, and put 30 alligator dens in that area. (Now that would make for an interesting game, wouldn’t it?) These dens weren’t all made at the same time, though, and were constructed or abandoned as the pond filled or dried out, respectively.

In summary, the sheer abundance, distinctive traits, and sizes of these structures on St. Catherines and elsewhere in the Georgia barrier islands give paleontologists excellent search images for seeking similar trace fossils made by large semi-aquatic archosaurs.

That’s the big take-home message here for vertebrate paleontologists. All of the information we gathered about these alligator dens from the Georgia barrier islands, especially what they look like, can be applied to test the fossil record of archosaurs. In other words, did archosaurs actually leave lots of dens for us to find, but we just didn’t know what to look for? Hopefully we’ll find out because of this research.

Later, denning ‘gator. (Photograph by Anthony Martin, taken on St. Catherines Island, Georgia.)

(Special thanks to Ruth Schowalter for assisting with the field work, and to the St. Catherines Island Foundation for funding some of the research.)

Source of Abstract (Reference):

Martin, A.J., Page, M., Vance, R.K., and Skaggs, S. 2012. Dens of the American alligator (Alligator mississippiensis) as traces and their predictive value for finding large archosaur burrows in the geologic record. Journal of Vertebrate Paleontology, 32 [Suppl. to No. 3]: 136.


 

 

Public Outreach via Ichnology: From “K to Gray”

(This post is the third in a series discussing academic scientists and public outreach of their science, but with a focus on my recent experiences in using ichnology and paleontology for public outreach. The first of the series, introducing science outreach in general and some of its challenges for academic scientists, is here, and the second, giving an example of how I did public outreach with kids at a local natural history museum, is here.)

During this past week, one of the lessons reinforced from doing public outreach of my science is that, before doing any public event, you first have to ask yourself a very important question: “Who is my audience?” You might think this is a basic question to ask, but it sometimes is not, simply because it takes a lot of courage to change old habits, especially if those habits are constantly rewarded.

Most academic scientists, including paleontologists, are trained to deliver professional talks to their peers, and their peers only. These are formal presentations, using PowerPoint or similar presentation software, which are either 15-20 minutes long (a talk at a professional conference) or a little less than an hour (a talk in a university seminar). In such talks, speakers take full advantage of jargon specific to their field and other verbal accouterments that are intended to set us apart from mere mortals and elevate us among our peers. This sort of presentation style is already a little scary for a lot of us scientists – many of whom are quite introverted – but that’s the standard, and we are rewarded for doing it just like that.

So I understand how doing something different for a presentation, and one not delivered to peers in your scientific field, might seem even scarier. And to depart from this basic model means you could be heading into unknown territory with all sorts of intellectually frightening prospects, of which most paramount is: what if people don’t understand what I’m saying?

Just before giving a public talk at Georgia College and State University this past April, my host, paleobotanist Dr. Melanie DeVore, introduces me, then we perform a ritual greeting with one another as if we are fiddler crabs. Most people in academia would consider this as a non-standard way to start a presentation. (Photograph by Ruth Schowalter, taken at Georgia College and State University in Milledgeville.)

Like many people who pay attention to science communication, I’ve seen a full spectrum of presentation styles with scientists who do public events. Some of these scientists were fantastically successful in communicating their passions, and I think their success was largely because they really seemed to knew who was there. Here’s also what I’ve seen them do:

  • They used a right tone throughout, respectful of the audience, yet confident in conveying their authority on a topic, while throwing in occasional humorous asides.
  • They were enthusiastic while remaining coherent.
  • They used language appropriate for their audience, applying simpler and less syllabic words in place of multisyllabic jargon.
  • Where jargon was used, it was explained in single, easy-to-follow sentences, and then reinforced with visual aids.
  • Once in a while they would repeat key points, but not so often that people got bored or (worse) thought the speaker was treating them like they were brain-dead morons.
  • Their bodies were an integral part of communicating their science, whether through moving, gesturing, acting out a scientific principle, or even varying facial expressions.
  • Their visual aids were perfectly understandable, using photographs of real, phenomena – but taken creatively – and beautiful artwork or graphs that also convey information clearly.

For those academic scientists who were supremely unsuccessful in communicating their science at a public event, they did the opposite of everything I just listed. Regardless, for both end members of this spectrum, I am very grateful for their showing me what works, and what doesn’t.

So in my first outreach event, done on Saturday, July 14 at Fernbank Museum of Natural History, my audience mostly consisted of children and their parents. Knowing that very few (if any) of their parents would have been academic scientists, my props, approach, and attitude were prepared with children and non-scientist adults in mind. In such preparations, I knew that visual aids would be important to augment any concepts I wanted to get across. I also knew that I would have to be somewhat basic in any terms I used, but without resorting to “See the dinosaur run. Run, dinosaur, run!” My enthusiasm had to be high, and I would have to be very friendly. Last, I had to be ready for nearly any idea or question to out of their mouths, from very well informed to, well, less so.

Fortunately, these preparations paid off, and I had a wonderful two hours interacting with a wide range of kids, ranging from 4-12 years old, and parents who shared their kids’ excitement about dinosaurs, fossils, and other facets of natural history.

Two days later, on Monday, July 16, I had a very different audience, and one that required a big mental shift from my Fernbank experience, but closer to what academic scientists would consider “normal.” It was the Emory Emeritus College, an organization within my home university. So it was a “home crowd,” and I knew most of them would be receptive to what I had to say. Yet it still represented a small challenge in knowing my audience and figuring out how to deliver it.

The Emory Emeritus College, as one might have figured out from its name, is composed of retired faculty at Emory University. Although I knew some of the faculty from before their retirement, I wanted to learn more about the goals and activities of this organization. I was pleasantly surprised to find out they were part of a nationwide organization, called the Association of Retirement Organizations in Higher Education. What is this? In their own words:

The Association of Retirement Organizations in Higher Education (AROHE) is an international network of retiree organizations at colleges and universities, fosters the development and sharing of ideas to assist member organizations in achieving their purposes and goals.

Along those lines, part of the mission of the Emory group is to foster further learning in retired faculty through regular lunchtime or breakfast-time lectures on a variety of general-interest topics. So I was delighted, several months ago, to have been invited to speak to this group by Dr. Sidney (Sid) Perkowitz. Sid is a retired physics professor who is also one of the few science faculty members at Emory – retired or otherwise – writing trade books intended specifically for public audiences, such as Hollywood Science, Empire of Light, and others. And not just books: he writes articles, essays, stage plays, performance dance pieces, and screenplays. In other words, he’s a pretty cool dude, and a great example of what scientists can become if they want to connect their science to a broader audience.

Sid thought that it would be great if I could talk with the emeritus faculty about the topic of my upcoming book (which is, like, you know, the title of this blog). But he also wanted me to mention how I integrate science and art in my work. Fortunately, the standard talk I give to public audiences about the book has plenty of examples of that, provided through my illustrations and photographs that will be in the book. Here are a few samples:

Three examples of slides I’ve used in my standard talk about my book, intended for general audiences, with some combining illustrations of mine and photographs. I know some people would suggest that I use even less text on the slides, but a little bit of information in addition to whatever I’m saying seems to help, too.

I suspected this approach – using visual elements to explain the subject of the talk – would work very well with this audience, which was composed of an eclectic group of well-educated people: artists, writers, literary critics, historians, theologians, physicians, chemists, political scientists, and more. Yet I was also keenly aware that just because they retired from teaching at Emory didn’t mean their minds had shut down. This was going to be an engaged, alert bunch.

It worked. About thirty people were there, mostly emeritus faculty, but with a few younger staff helping with the organization of lunch. After a generously laudatory introduction by my hosts, I began with the mystery of the broken bivalve, the opening few pages of the book, but told through images.

They were an attentive audience, with only one person nodding off halfway through my talk, which was much better than what I’ve experienced in a similarly sized class of 18-22year-old students (and following a delicious lunch, so completely understandable). Both planned and unplanned laughs took place throughout the talk, which always helps to relax an audience and me, too.

The time for questions was the part I savored, because I knew they’d be good, conversational ones. Here are three I remember:

  1. What about the history of ichnology? How long have people been recognizing traces and trace fossils? Answer: It’s as old as humanity, although ichnology has been around as a formal science since the early 19th century.)
  2. How could someone as young as me be able to do this (ichnology) so well? (This got a good laugh, because I’m 52 years old, which was “young” for this crowd.”) Answer: Lots of practice. (“How do you get to Carnegie Hall? Practice.”) Also, I know I have a long ways to go whenever I’m around peers who are much better at this than me (and older).
  3. How would this (ichnology) be useful for convincing people that global-climate change is not just some crazy left-wing conspiracy? Answer: The last slide in my talk is a prediction of what will happen on the Georgia coast with increased sea level over the next 100 years or so, and traces will be one more piece of evidence that this is happening.

The most important question, though, was at the very last, and it connected directly with my experience with the children at Fernbank Museum only two days before. What was going to be the future of ichnology if the current generations of children are less likely to go outside and observe nature?

I didn’t really have an answer for this, other than to say that I teach a freshman seminar on tracking at Emory, which gets 18-year-olds out in the classroom, and that some creative combination of digital media that also involves looking at traces outside (such as CyberTracker™) might help, too. It’s not an easy problem to solve, and it’s real. That’s why the first piece of advice I gave kids at Fernbank two days previously was to get outside and enjoy what nature had to teach them.

But this was a key point. Science isn’t just something we learn in college, especially in one required course so we could graduate for non-scientists, or doing it exclusively in a lab with colleagues in academia. It should be life-long learning, or as some science educators say, “from K to gray.” So I see ichnology and the popularizing of it as a science as one solution among many, to make sure that our lives are filled with everyday but awe-inspiring science, from our first toddling steps to our last conscious breaths.

 

Of Darwin, Earthworms, and Backyard Science

On the other hand, I sometimes think that general & popular Treatises are almost as important for the progress of science as original work.

– Charles Darwin, in a letter to Thomas Huxley, written in his home (Down House) on January 4, 1865

A combined blessing and burden that comes with travel, especially to new places, is the memory we carry of other places. The blessing part comes from the opportunity to connect previously disparate bodies of knowledge and experiences. This is always exciting for anyone who likes that sort of thing, while also satisfying purported promoters of “interdisciplinarity” (which was probably not a word until academia invented it, then pretended to reward those who practice it). On the other hand, the burden is that these thoughts of previous places can act as a veil, obscuring or overlaying our perception of novel sensations. In extreme cases, these remembrances can smother original ideas, especially if the places of our past are idealized and held as some worldly standard to which all other things must be compared.

What does this roundish stone, lying in the ground of the English countryside south of London, have to do with life traces of the Georgia coast? Good question, and if you’d like the start of an answer, please read on.

This Janus-like duality of travel occurred to me after my wife (Ruth) and I left Georgia for a few weeks of vacation in the United Kingdom, yet once there, I thought about my original home of Indiana and the barrier islands of Georgia. Ruth had never been to the U.K., and I hadn’t visited since attending an ichnology conference and field trip in Yorkshire, held in 1999. Fortunately, Ruth has a friend on the northeastern side of London who generously offered us a place to stay before we headed elsewhere. This refuge gave us a few days to learn what London had to offer us while we otherwise adjusted to cultural and temporal differences.

Among the myriad of educational opportunities in the London area is one that had been on my mind for quite a while, thanks to my writing about the Georgia coast. This was an intended visit to Down House, the former home of Charles Darwin and his family. Down House is located in a rural setting of the greater London area – Downe Village in the former parish of Kent – well southeast of Big Ben and all of the other typical touristy trappings of downtown London. Still, it can be visited via public transportation, which became doable for us Yanks once we figured out the needed connections in the intricate rail and bus system weaving throughout the London area.

From where we were staying, it took us nearly two hours to reach Down House. It was a mildly aggravating sojourn by train and bus, but made much better once we realized that driving there in London traffic with a hired car would have been far worse for both us and other people sharing the road (or sidewalk, as it may be). After our bus dropped us off in Downe Village, we saw a small sign pointing the way to Down House, and walked for  15 minutes on a quiet, country road before reaching our goal, a stroll only occasionally interrupted by brief terror induced when cars approached from the direction opposite of our expectations.

 When you step off the bus in Downe Village, this is one of the few clues that you’re near Darwin’s home, a place where scientific thought and human history changed in a big way.

A signpost in Downe Village provides a clue that Darwin has something to do with this area, although some horse named “Invicta” gets equal billing, and “St Mary the Virgin” gets bigger typeface. Still, it was nice to see Darwin’s visage there, too.

Blink and you’ll miss it: after walking about 10 minutes down the road, here’s the sign pointing the way to Down House. Personally, I thought it could use a neon fringe, or at least some DayGlo™ colors, but subdued is probably the way Darwin would have liked it.

We were also a little surprised at the subdued signage pointing us in the right direction to our goal, and I mused briefly about the homes of people who had far less impact on the advancement of human knowledge and world perspectives whose homes are accorded far more attention and adulation. (Yes, I’m looking at you, Graceland.)

The front of Down House, the home of Charles Darwin and his family from 1842 and after his death in 1882.

Down House is both modest and grand, not palatial at all, but impressive inside. Rooms on the second floor (or first floor, if you live in the U.K.) hold displays with a neatly presented synopsis of Darwin’s life and scientific findings, starting with his little boat journey in 1831-1836 through his grand synthesis of evolutionary principles. The ground floor of the house is more or less restored to the time when the Darwin family lived there, with particular attention paid to Mr. Darwin’s study, which was his main writing and experimentation room, or what modern-day scientists might call his “research space.” This is where On the Origin of Species and most other books of his were born. Infused with a purely fan-boy sort of joy, I was thrilled to be in the same place where many of his revolutionary ideas about evolution became expressed through words.

However, one item in the family living room (drawing room) intrigued me in a special way. It was a piano. This object was certainly used for the enjoyment of Darwin family members and guests, with the degree of delight of course depending on the proficiencies and musical choices of whoever played it. But then I was reminded – by the disembodied voice of Sir David Attenborough, no less – that this was not just a musical instrument, but also a scientific tool. (Disappointingly, Sir Attenborough volunteered this information in a recorded audio tour provided with admission to Down House, not through clairvoyance in a Sir Arthur Conan Doyle sense.) On this piano in the room and in the nearby Down House backyard are the places where Darwin conducted some of the earliest quantitative experiments in the behavioral ecology and neoichnology of terrestrial infauna. Or, in plain English, Darwin used this piano and a few other tools to measure and test the behavior of earthworms as tracemakers in soil.

The rear of Down House, with the two windows to the left looking into the drawing room, where the Darwin family piano is located. Unfortunately, photographs are not allowed in the interior of Down House, hence the external, voyeuristic perspective.

Darwin enthusiasts know well that the last book Darwin wrote was about a personal passion of his, the biology and behavior of earthworms. This book, titled The Formation of Vegetable Mould through the Action of Worms with Observations on Their Habits (1881), encapsulates many observations and conclusions he made from his long-term study of the oligochaete annelids that lived abundantly in the backyard and gardens of Downe House. As some biographers have noted, Darwin became quite a homebody after his years of voyaging on The Beagle, and he stayed close to Down House for much of his life after moving there in 1842. Nonetheless, this geographically restricted lifestyle did not mean he stopped inquiring about the natural world around him. On the contrary, he carried out intensive studies in and just outside of Down House, some of which dealt with earthworms, a subject that interested him for more than half of his life.

Darwin’s wonderment at worms was jump-started by something he noticed nearly thirty years after he innocuously tried to improve the soil in the pasture behind Down House. Told that he could get rid of mossy areas by laying down cinders and chalk, he obediently did so, and checked those same areas 29 years afterwards. It turned out the anomalous sediments had been buried about 18 cm (7 in) below the surface.

Darwin soon suspected this surface was newly made, formed by generations of earthworms bringing up soil over the preceding three decades. Through the technical support of his son Horace, an engineer, Darwin began to measure just how much earth an earthworm could worm. He already knew that earthworms burrowed through, consumed, and defecated sediment, which resulted in thoroughly mixed and chemically altered soils. So using his geologically inspired sense of time and rates of processes, he also rightly imagined that the daily activities of earthworms, multiplied by millions of worms and enough years, changed the very ground underneath his feet in a way so that it, well, evolved.

Ever the good scientist, though, Darwin tested this basic idea through experimentation. His assessment was accomplished through a precise measuring device invented by his son and flat, circular rocks, nicknamed wormstones, which were set out in the backyard of Down House. Based on my visual and tactile examination of the one wormstone that still lies outside of Down House, it looked like a quartz sandstone. However, out of respect for it and its ichnological and historical heritage, I did no other tests of its composition.

One of Darwin’s original “wormstones” (foreground center) placed in a pastoral setting behind Down House. Paleontologist Barbie (just behind the wormstone), who has accompanied me for much field work on the Georgia coast, helpfully provides scale.

Close-up view of wormstone, showing three metal slots set into a central ring and two rods, which provided the datum for measuring change in the wormstone’s depth over time. £10 note (with Darwin’s portrait on the right) for scale.

The experiment was elegantly simple. Using a device invented by Horace in 1870 (illustrated below, and photo here), the surface of the wormstone was measured relative to the height of the surrounding soil surface. This change in relative horizon was discerned by fitting the device on three metal slots that had been added to the edge of a central hole in the wormstone. Metal rods inserted through this same hole were connected to underlying bedrock, ensuring that these would stay stationary as worms churned the surrounding soil. Thus these rods acted as a horizontal datum through which any changes in the ground surface could be compared.

Illustration of Horace Darwin’s “wormstone measuring instrument,” with “K” pointing to where the instrument was placed to contact with the metal rods; the change with each measurement over time between this and “A” (a metal ring) would then show how much the stone had sunk downward. My source of this figure is from an online PDF by the Bromley Partnerships, Discover Darwin: An Education Resource for Key Stage Two, but its primary source is not cited there, and I could not otherwise find an attribution.

Darwin figured that the burrowing activity of earthworms underneath the stone, as well as sediment deposition at the surface as fecal castings, would result in the stone “sinking” over time, becoming buried from below. He was right. Using the wormstone and Horace’s measuring device, he calculated the approximate rate of sinking (2.2 mm/year). This was also a measure of soil deposition, which he attributed to earthworms depositing the sediment through fecal castings. Extrapolating these results further, he estimated that 7.5 to 18 tons (6.8-16.4 tonnes) of soil were moved by worms in a typical acre (0.4 hectares) of land.

Something very important to remember in Darwin’s approach to this study was that he was not just a biologist, but also an excellent geologist, taught early in his career – and later befriended – by one of the founders of modern geology, Charles Lyell. Consequently, he had a long-term view of how small, incremental changes every year added up to big changes over time. Or, to put it in Darwin’s own words (The Formation of Vegetable Mould, p. 6), when he responded to a critic claiming that earthworms were too small and weak to have any large-scale effect on their surroundings:

Here we have an instance of that inability to sum up the effects of a continually recurrent cause, which has often retarded the progress of science, as formerly in the case of geology, and more recently in that of the principle of evolution.

Darwin wasn’t just a quantitative ichnologist, but he also described and illustrated some of the traces made by earthworms, such as their burrows, aestivation chmabers, fecal pellets, and turrets made by their fecal casts. (Much later, in 2007, South American paleontologists described fossil examples of fecal pellets and aestivation chambers from Pleistocene rocks of Uruguay.) Darwin even noted the orientations and species of leaves earthworms pulled into burrows to plug these (p. 64-82), then he independently tested these results with pine needles and triangles of paper (p. 82-90)!

Illustrations of turrets made by fecal pellets of earthworms, in The Formation of Vegetable Mould through the Action of Worms with Observations on Their Habits (1881): from left to right, Figure 2 (p. 107), Figure 3 (p. 124), and Figure 4 (p. 127).

In short, Darwin, through combining his vast knowledge of biology with geological principles, had all the right stuff to make for a formidable ichnologist. Even better, he was keenly interested in the ichnological processes happening just outside his house, and didn’t feel the need to take a long boat trip to watch these processes in some far-off, exotic land. Unknowingly, he was also providing an example of how to do “backyard science” long before this term became associated with cost-effective means for introducing children to nature observation.

All of this marvelous research done by Darwin, culminating in his writing a book at Down House that ended up being one of his most popular, leads me to a bit of a mini-rant, followed by my connecting this science to my homes of Indiana and Georgia, and ending with a message of hope, if I may.

Darwin’s earthworm research epitomized the sort of long-term, DIY experimentation that seemingly only Darwin could have done, and in his day. In contrast, to show how far science has changed since his time, the current profit-oriented business model afflicting modern research universities might have demanded Darwin write a multi-million dollar (or pound) grant to conduct this study. (I suppose the piano would have been the most expensive item on the equipment list, and the wormstones the least.)

Moreover, in this hypothetical scenario, Darwin only could have written such a grant after “pre-confirming” most of his results by publishing a series of research papers. And not just by publishing these papers, but also by making sure they were in prestigious journals, most of which would require expensive subscriptions to read, ensuring that only a small handful of people would read about his work. (A book written for a popular audience? Please.) Had Darwin been a young man, the completion of a 30-year-long study also would have depended on whether he was granted tenure early on. This likely would have been decided by people with little or no expertise in geological processes, earthworms, and bioturbation, but who could certainly count grant revenue and compare journal impact factors.

Fortunately, though, Darwin was independently wealthy, well established as a senior scientist, and never had to worry about tenure or other such trivial matters. Instead, he could just focus on studying his much beloved worms, then think of how to share his vast knowledge of them with a broader audience. Darwin never used the word “ichnology” in his writings, let alone “neoichnology,” and he wrote a book on this topic for natural-history enthusiasts, rather than through a series of research papers published in inaccessible journals. Nonetheless, in his own way, he surely advanced the popularization of ichnology through his slow, deliberate, careful, and imaginative methods, which he combined with a desire to communicate these results to all who were interested.

How does all of this link with Indiana and Georgia? Well, Darwin’s “backyard science” reminded me of how I, like many naturalists of a certain generation, grew up learning about nature through what was in my own backyard. Today I have no doubt that my fascination with the behavior and ecology of insects, plants, and yes, earthworms in my Indiana backyard all contributed to a subsequent desire to do science outside as an adult. To satisfy this urge, I later picked geology as my main subject of study, but also took advantage of my biological leanings by concentrating on ichnology in graduate school. My living in Georgia since 1985 and other serendipitous events then eventually led to my writing a book about traces of the Georgia barrier islands (being published through Indiana University Press). In one chapter of this book, when I introduce earthworms as tracemakers, I made sure to write at least a few pages about Mr. Darwin and his experiments with earthworms. So although Darwin never traveled to Indiana or the Georgia coast, I carried my boyhood and adult experiences of both places in my mind to his former home.

Now here’s the hopeful message (not to be confused with a “hopeful monster“). Lots of field-oriented scientists spend much of their time outside for their research, and many require only modest amounts of money for their studies. So what they have begun to do is side-step the reigning corporate mentality influencing so-called “big science” at universities, while also making active attempts to better connect their research with more people than their academic peers. Through organized efforts like The SciFund Challenge and other crowd-sourcing methods, scientists are seeking small personal donations from the public, allowing them to better focus on their research, rather than spending much time, energy, and angst in writing massive research grants that have little chance of being funded. Thus much like earthworm castings, these  donations add up over time and provide rich, fertile ground for conducting basic science. (OK, maybe not the best metaphor, but you get the point.)

Another facet of this research is the stated commitment of scientists to report their research progress through blogs, then publish their peer-reviewed results in open access journals, which provide articles free for anyone with an Internet connection and curiosity in a scientific subject. All of this means that small investigations with big implications – like Darwin’s study on earthworms – are more likely to happen, and are better assured of reaching a public eager to learn about these sciences, while giving the opportunity for people to witness the direct benefits of their investments.

So how does the Darwin family piano relate to his study of earthworms? Do the southeastern U.S., earthworms, and Darwin’s study of their behavior somehow intersect? In answer to the first question, it’s interesting, and in answer to the second, yes. But an explanation of both will have to wait until next time.

In the meantime, if you go out for a walk later today, pay attention to the ground beneath you, and think of how it reflects an ichnological landscape, a result of collective traces made by those “lowly” earthworms, and how Charles Darwin clearly explained this fact in 1881. For me, it was an honor to stand in the same area where Darwin made his measurements, used his humble instruments, and applied his fine mind; this despite my later realization that I was standing on a new ground surface relative to where Darwin stood. After all, 130 years has passed since his death, meaning the ground had been recycled by descendants of the same earthworms he watched with his appreciative and discerning eyes. All of which makes for a different kind of descent with modification, one that instead reflects an ichnological perspective well articulated and appreciated by Darwin.

Darwin’s “sandwalk,” a walking route behind Down House he often took to help with his thinking, and a visible trace today of Darwin’s legacy as one of the first popularizers of ichnology.

Further Reading

Darwin, C. 1881. The Formation of Vegetable Mould through the Action of Worms with Observations on Their Habits. John Murray, London: 326 p. (A scan of the original book, converted to a PDF document, is here.]

Pemberton, S. George and Robert W. Frey. 1990. Darwin on worms: the advent of experimental neoichnology. Ichnos, 1: 65-71. (Text for article here.)

Quammen, D. 2006. The Reluctant Mr. Darwin: An Intimate Portrait of Charles Darwin and the Making of His Theory of Evolution. W.W. Norton, New York: 304 p.

Verde, M., Ubilla, M., Jiménez, J.J., and Genise, J.F. 2006. A new earthworm trace fossil from paleosols: aestivation chambers from the Late Pleistocene Sopas Formation of Uruguay. Palaeogeography, Palaeoclimatology, Palaeoecology, 243: 339-347.

 

 

Using Traces to Teach about Traces

This past weekend, my colleague Steve Henderson and I co-led a field trip to Sapelo Island, Georgia with 13 Emory University undergraduate students and our spouses. This trip is done biannually as a firm requirement for students taking a class of mine at Emory called Modern and Ancient Tropical Environments. This course, in turn, is a prerequisite for a 10-day field course we’ll do in December-January, ENVS 242, which appropriately has the same name as ENVS 241 except for the addition of “Field Course” at the end. That course, though, will take place on another island, albeit a very different one, San Salvador, one of the “Out Islands” of the Bahamas.

Why were we on Sapelo Island to prepare for a field course in the Bahamas? It was to fulfill several learning goals that will sound familiar to all science educators who take their students outside of a classroom for their learning. In no particular order, these are:

  • Get students to observe natural phenomena while in the field;
  • Ask good questions about what they’ve observed;
  • Learn how to properly record their observations;
  • Come up with explanations (hypotheses) for whatever questions were provoked by their field experiences; and
  • Staying safe while doing all of this, which included adjusting to whatever conditions we might encounter in the field.

Our spouses, Ruth Schowalter and Kitty Henderson, are also educators; Ruth teaches English as a Second Language (ESL) at Georgia Tech, and Kitty is a middle-school earth-science teacher in Covington, Georgia. Moreover, both have been to Sapelo Island many times, having gained a wealth of field-gained knowledge about its natural history. Hence our students were lucky to have all four of us there to introduce them to the island, and we likewise felt very fortunate to be there with such an eager group on a gorgeous fall weekend.

Environmental Studies students from Emory Univeristy with me (foreground) and Steve Henderson (right), looking at a 500-year-old relict salt marsh, exposed by erosion along Cabretta Beach on Sapelo Island, Georgia. Sure beats staying in a classroom to learn about modern and ancient environments. (Photograph by Ruth Schowalter.)

Of course, once on Sapelo or any other barrier island of the Georgia coast, I cannot help but use ichnology – the study of traces – as a uniting theme for my teaching. Steve, who did his Ph.D. research on Sapelo in the late 1970s, is more of a taphonomist, which is someone who studies how fossils are made, from death to burial to preservation. Nonetheless, ichnology and taphonomy overlap considerably, hence our respective approaches complement one another very well, a synergism aided by our having had the same Ph.D. advisor – Robert (Bob) Frey – at the University of Georgia. Once in the field, every track, burrow, feces, and body part of a dead animal we found – and the occasionally sighted live animal – became a dynamic learning opportunity for us, in which we could apply basic scientific methods that were all accented by a sense of wonder.

A dead blue crab (Callinectes sapidus) found in the middle of Sapelo Island, at least 2 kilometers (1.2 miles) from the ocean. How did it get there, and what happened to it? Our students went through the possibilities based on the evidence – main body nearly entire, no toothmarks on it, but bleached white and missing most legs. We finally concluded that it had been dropped by a large predatory bird, such as a great blue heron (Ardea herodias) or great egret (Ardea alba), which probably had shaken off most of the crab’s legs before attempting to eat it. A nice little lesson in taphonomy, for sure. (Photograph by Anthony Martin.)

But perhaps my favorite teaching techniques to use while on Sapelo or any other Georgia barrier island is to use the completely low-tech and ancient method of drawing in the sand. Through my own traces, then, I can teach my students about ichnology and its applications to understanding geologic processes. For example, one of the beaches on Sapelo – Cabretta Beach – is undergoing rapid erosion from a combination of longshore drift and sea-level rise. At this place, downed pines and oaks laid prone in the surf, a former forest now a beach. This was the perfect place to introduce the students to Walther’s Law, which states that laterally adjacent environments will succeed one another vertically in the geologic record. This principle then can be applied to figuring out how a given sequence of strata might reflect a rising or lowering of sea level in the past.

No PowerPoint? No projector? No computer? No problem. Teaching in the field is easy when you have such a nice canvas to work with. (Photograph by Ruth Schowalter.)

So with the sea behind me, a sandy beach wiped clean by the receding tide, and a handy stick, I scratched out a typical sequence of sedimentary strata and their diagnostic traces that would result from sea level going up (a transgression) on the Georgia coast. (Ruth and I were also inspired to create artwork on this theme, discussed in a previous entry.) Terrestrial environments with tree-root and insect traces were at the base of the sequence, succeeded vertically by sandy dune deposits with ghost-crab and insect burrows, then sandy beach deposits with ghost-shrimp burrows, topped off by offshore sandy muds and sands burrowed by fully marine echinoderms, such as heart urchins, sea stars, and brittle stars. I then asked the students to look around them and point to each of the laterally adjacent environments represented in my sand drawing, which they dutifully did. Finally, just to make sure our students got it, we inquired about what sequence should result if sea level dropped, and they correctly surmised that the place would revert back to terrestrial conditions, with the marine sediments buried below.

My applying the final touches on a sand-sketch masterpiece of a transgressive-regressive sequence of strata and its traces, as my students watch. Would you like to see it? Sorry, the tide came in just a few hours after I drew it, and we didn’t get a photo of it. So you’ll just have to draw your own, and preferably on a beautiful beach. (Photograph by Ruth Schowalter.)

As we all stood back to look at the transgressive-regressive sequence of strata, the formerly abstract concept of Walther’s Law became far more real for our students. The dead trees on either side of our group, an eroded dune and maritime forest behind us, and the sea in front of us, all reinforced this lesson, bolstered by our presence in a place with those environments being actively affected by geological and biological processes.

Another instance of using traces in the sand to teach about traces was with ghost-shrimp burrows. At low tide on the previous day of the field trip, the students found many small, volcano-like mounds on the intertidal beach surface some with neat piles of tiny mud-filled cylinders that looked like “chocolate sprinkles” sometimes seen on cupcakes. What were these?

I informed them that we were looking at the tops of ghost-shrimp burrows and their fecal pellets; earlier, we had seen the knobby, pelleted walls of these same ghost-shrimp burrows, which were the deeper parts. What does an entire ghost-shrimp burrow system look like in cross-section? Time for another sand drawing. This one introduced the students to what had been only disembodied words memorized for an exam – ghost shrimp, pellets, walls, vertical shafts, branching – that now could be supplemented by actual traces next to the drawing. You can’t beat these sorts of visual aids, a huge bonus from our being in the right places to see them.

Using a “clean slate” of a beach wiped smooth by the tide for sketching a cross-section of a typical ghost-shrimp burrow, many of which also happened to be underneath our feet. (Photograph by Ruth Schowalter.)

The final sketch of a ghost-shrimp burrow, showing its volcano-like top, narrow “chimney” leading down to the main shaft of the shrimp’s living chamber, some of the pellets lining its burrow walls, and the geometry of the burrow network below. (Photograph by Anthony Martin.)

Was my teaching technique new and innovative, worth presenting at an educational conference as an assessment-friendly pedagogy that would maximize outcome-based education? In short, no. Sand drawing as a tool for education has a very long tradition in indigenous cultures, especially those that have their own forms of ichnology (such as tracking) at their cores. For example, in central Australia, Ruth and I had seen a creation story etched in the ground that had been done some by the Arrente people who live near Uluru. This story likewise used animal traces (emu tracks) as a key feature, a sort of iterative use of traces for inspiration and teaching.

Creation story of the Arrente people drawn in the soil near Uluru in Northern Territory, Australia. The figure at the bottom is an emu, and its tracks are shown leading away from it. (Photograph by Anthony Martin.)

At the same place, we also watched an Arrente elder demonstrate how to make animal tracks using only his fingers and palms, which was also described in books we had read about

Did you know you can use your hands to make animal tracks? In this photo, I use the fine-grained dune sands of Sapelo Island to create a reasonable depiction of kangaroo tracks. Yes, I know, kangaroo tracks on the Georgia barrier islands are not very likely, but you get the idea. Next time I’ll do raccoon tracks instead.

Some of us educators are old enough to remember using a technological succession of blackboards and chalk, overhead projectors with pens, whiteboards with dry-erase pens, and now presentation software (Keynote, PowerPoint, and so on) for imparting lessons. So it gives me great comfort to know that, with a generation of students who have never known a world without computers with a concomitantly reduced connection to the outdoors, we can still switch back to using the ground beneath our feet, our eyes, hands, and imaginations to teach and learn about the life traces around us.

Further Reading

Bingham, J. 2005. Aboriginal Art and Culture. Raintree, Chicago, Illinois: 57 p.

Hoyt, J.H., and Hails, J.R. 1967. Pleistocene shoreline sediments in coastal Georgia: deposition and modification. Science, 155: 1541-1543.

Hoyt, J.H., Weimer, R.J., and Henry, V.J., Jr. 1964. Late Pleistocene and recent sedimentation on the central Georgia coast, U.S.A. In van Straaten, L.M.J.U. (editor), Deltaic and Shallow Marine Deposits, Developments in Sedimentology I. Elsevier, Amsterdam: 170-176.

Louv, R. 2005. Last Child in the Woods: Saving Our Children from Nature-Deficit Disorder. Algonquin Books, Chapel Hill, North Carolina: 390 p.

Middleton, G.V. 1973. Johannes Walther’s Law of the Correlation of Facies. GSA Bulletin, 84: 979-988.

Weimer, R.J., and Hoyt, J.H. 1964. Burrows of Callianassa major Say, geologic indicators of littoral and shallow neritic environments. Journal of Paleontology, 38: 761-767.